[1] V. E.Fortov. High Energy Densities in Planets and Stars. Extreme States of Matter: High Energy Density Physics, 505-590(2016).
[2] J.Barnes, D.Kasen, B.Metzger, E.Quataert, E.Ramirez-Ruiz. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature, 551, 80-84(2017).
[3] J. P.Freidberg. Plasma Physics and Fusion Energy(2008).
[4] C.Brown, T. E.Cowan, W.Fountain, S. P.Hatchett, M. H.Key, M.Rothet?al.. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett., 86, 436-439(2001).
[5] R.Betti, O. A.Hurricane. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435-448(2016).
[6] K. S.Anderson, T. R.Boehly, R. S.Craxton, V. N.Goncharov, D. R.Harding, J. P.Knaueret?al.. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).
[7] D. A.Callahan, D. T.Casey, P. M.Celliers, C.Cerjan, E. L.Dewald, O. A.Hurricaneet?al.. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343-348(2014).
[8] C.Baccou, S.Depierreux, C.Goyon, C.Labaune, G.Loisel, J.Rafelski, V.Yahia. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma. Nat. Commun., 4, 2506(2013).
[9] C. R.Brune, D. T.Casey, D. B.Sayre, V. A.Smalyuk, R. E.Tipton, C. R.Weberet?al.. Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion. Nat. Phys., 13, 1227-1231(2017).
[10] I.Hofmann. Review of accelerator driven heavy ion nuclear fusion. Matter Radiat. Extremes, 3, 1-11(2018).
[11] F. M.Arioli, L.Fedeli, A.Formenti, M.Passoni, A.Pazzaglia, A.Tentori. Enhanced laser-driven hadron sources with nanostructured double-layer targets. New J. Phys., 22, 033045(2020).
[12] W.Bang, M.Barbui, A.Bonasera, G.Dyer, K.Hagel, H. J.Quevedoet?al.. Temperature measurements of fusion plasmas produced by Petawatt-Laser-Irradiated D23He or CD43He clustering gases. Phys. Rev. Lett., 111, 055002(2013).
[13] W.Bang, M.Barbui, A.Bonasera, K.Hagel, J. B.Natowitz, K.Schmidtet?al.. Measurement of the plasma astrophysical S factor for the 3He(d, p)4He reaction in exploding molecular clusters. Phys. Rev. Lett., 111, 082502(2013).
[14] A.Bonasera, M.Donovan, G.Dyer, E.Gaul, H. J.Quevedo, G.Zhanget?al.. Range of plasma ions in cold cluster gases near the critical point. Phys. Lett. A, 381, 1682-1686(2017).
[15] A.Bonasera, M.Huang, Y. G.Ma, B. F.Shen, H. W.Wang, G.Zhanget?al.. Nuclear probes of an out-of-equilibrium plasma at the highest compression. Phys. Lett. A, 383, 2285-2289(2019).
[16] S.Fujioka, H.Nishimura, D.Salzmann, H.Takabe, F.Wang, N.Yamamotoet?al.. X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion. Nat. Phys., 5, 821-825(2009).
[17] G.Grim, E. P.Hartouni, A. J.Kemp, S. C.Wilks. Generating keV ion distributions for nuclear reactions at near solid-density using intense short-pulse lasers. Nat. Commun., 10, 4156(2019).
[18] M. K.Matzen. Z pinches as intense x-ray sources for high-energy density physics applications. Phys. Plasmas, 4, 1519-1527(1997).
[19] R. P.Drake. Introduction to high-energy-density physics. High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics, 1-20(2018).
[20] A.Bonasera, M.Huang, H. J.Quevedo, G.Zhang. Nuclear astrophysics with lasers. Nucl. Phys. News, 29, 9-13(2019).
[21] Y.Geng, Z.Gong, C.Jeon, S. G.Lee, Y.Shou, P.Wanget?al.. Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity. Phys. Rev. X, 11, 021049(2021).
[22] C.Arda, S.H?fer, D.Kartashov, D.Khaghani, O. N.Rosmej, Z.Samsonovaet?al.. Generation of keV hot near-solid density plasma states at high contrast laser-matter interaction. Phys. Plasmas, 25, 083103(2018).
[23] J. H.Bin, D.Kiefer, C.Kreuzer, W. J.Ma, M. J.Streeter, H. Y.Wanget?al.. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas. Phys. Rev. Lett., 115, 064801(2015).
[24] I. W.Choi, L.Cialfi, D.Dellasega, L.Fedeli, I.Prencipe, A.Sgattoniet?al.. Development of foam-based layered targets for laser-driven ion beam production. Plasma Phys. Controlled Fusion, 58, 034019(2016).
[25] J. H.Bin, Z.Gong, C.Kreuzer, H. Y.Wang, M.Yeung, M. L.Zhouet?al.. Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density plasma. Phys. Rev. Lett., 120, 074801(2018).
[26] I.W.Choi, I. J.Kim, H. W.Lee, W. J.Ma, P. K.Singh, J. Q.Yuet?al.. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil. Phys. Rev. Lett., 122, 014803(2019).
[27] C.Bargsten, M. G.Capeluto, R.Hollinger, V.Kaymak, A.Pukhov, V. N.Shlyaptsevet?al.. Efficient picosecond x-ray pulse generation from plasmas in the radiation dominated regime. Optica, 4, 1344(2017).
[28] C.Bargsten, M. G.Capeluto, R.Hollinger, V.Kaymak, A.Pukhov, S.Wanget?al.. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures. Sci. Adv., 3, e1601558(2017).
[29] K. U.Akli, R. R.Freeman, L. L.Ji, A.Pukhov, J.Snyder. Towards manipulating relativistic laser pulses with micro-tube plasma lenses. Sci. Rep., 6, 23256(2016).
[30] F.Baffigi, G.Cristoforetti, G.D’Arrigo, A. D.Lad, P.Londrillo, P. K.Singhet?al.. Transition from Coherent to Stochastic electron heating in ultrashort relativistic laser interaction with structured targets. Sci. Rep., 7, 1479(2017).
[31] H.-r.Huang, H.-y.Lan, W.-y.Liu, S.-d.Wu, Y.-c.Wu, L.-q.Zhanget?al.. Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array. Phys. Plasmas, 28, 023110(2021).
[32] P. Y.Chang, J.Frenje, O. V.Gotchev, J. P.Knauer, D. D.Meyerhofer, O.Polomarovet?al.. Laser-driven magnetic-flux compression in high-energy-density plasmas. Phys. Rev. Lett., 103, 215004(2009).
[33] K.Jiang, A.Pukhov, C. T.Zhou. TJ cm−3 high energy density plasma formation from intense laser-irradiated foam targets composed of disordered carbon nanowires. Plasma Phys. Controlled Fusion, 63, 015014(2020).
[34] Z.Gong, G.Mourou, Y. R.Shou, Y. H.Tang, X. Z.Wu, J. Q.Yuet?al.. Efficiency enhancement of ion acceleration from thin target irradiated by multi-PW few-cycle laser pulses. Phys. Plasmas, 28, 023102(2021).
[35] M. S.Blümcke, E.Eftekhari-Zadeh, R.Loetzsch, Z.Samsonova, I.Uschmann, M.Zapfet?al.. Laser energy absorption and x-ray generation in nanowire arrays irradiated by relativistically intense ultra-high contrast femtosecond laser pulses. Phys. Plasmas, 29, 013301(2022).
[36] L. H.Cao, Y.Chao, Y.Jiang, Z. J.Liu, R.Xie, C. Y.Zhenget?al.. Improvement of laser absorption and control of particle acceleration by subwavelength nanowire target. Phys. Plasmas, 27, 123108(2020).
[37] K. U.Akli, R. R.Freeman, S.Jiang, A. G.Krygier, D. W.Schumacher. Effects of front-surface target structures on properties of relativistic laser-plasma electrons. Phys. Rev. E, 89, 013106(2014).
[38] V.Kaymak, A.Pukhov, J. J.Rocca, V. N.Shlyaptsev. Nanoscale ultradense Z-pinch formation from laser-irradiated nanowire arrays. Phys. Rev. Lett., 117, 035004(2016).
[39] L.Cao, Y.Guet?al.. Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target. Phys. Plasmas, 17, 043103(2010).
[40] T. E.Cowan, S. P.Hatchett, M. H.Key, T. W.Phillips, M.Roth, R. A.Snavelyet?al.. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett., 85, 2945-2948(2000).
[41] C.Brabetz, O.Deppert, P.Fiala, A.Kleinschmidt, P.Poth, F.Wagneret?al.. Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets. Phys. Rev. Lett., 116, 205002(2016).
[42] B.Li, L.Shan, J.Wang, B.Zhang, Z.Zhang, Z.Zhaoet?al.. Transport of fast electrons in a nanowire array with collisional effects included. Phys. Plasmas, 22, 123118(2015).
[43] B.Borm, L.Burr, F.G?rtner, L.Gremillet, D.Khaghani, M.Lobetet?al.. Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy. Sci. Rep., 7, 11366(2017).
[44] P.Campbell, M.Dozières, P.Forestier-Colleoni, K.Krushelnick, A.Maksimchuk, G. M.Petrovet?al.. Optimization of laser-nanowire target interaction to increase the proton acceleration efficiency. Plasma Phys. Controlled Fusion, 61, 065016(2019).
[45] C.Bargsten, R.Hollinger, A.Prieto, A.Pukhov, M. A.Purvis, V. N.Shlyaptsevet?al.. Relativistic plasma nanophotonics for ultrahigh energy density physics. Nat. Photonics, 7, 796-800(2013).
[46] D.Rolles. Highly efficient nanoscale X-ray sources. Nat. Photonics, 12, 59-60(2018).
[47] L.-M.Chen, P.Gibbon, Y.-T.Li, Z.-M.Sheng, W.-M.Wang, J.Zhang. Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime. Proc. Natl. Acad. Sci. U. S. A., 115, 9911-9916(2018).
[48] Z.Cao, D.Kong, Z.Mei, Z.Pan, Y.Shou, P.Wanget?al.. High-efficiency water-window x-ray generation from nanowire array targets irradiated with femtosecond laser pulses. Opt. Express, 29, 5427-5436(2021).
[49] C.Calvi, A.Curtis, R.Hollinger, V.Kaymak, A.Pukhov, J.Tinsleyet?al.. Micro-scale fusion in dense relativistic nanowire array plasmas. Nat. Commun., 9, 1077(2018).
[50] C.Calvi, A.Curtis, R.Hollinger, S.Huanyu, S.Wang, Y.Wanget?al.. Ion acceleration and D-D fusion neutron generation in relativistically transparent deuterated nanowire arrays. Phys. Rev. Res., 3, 043181(2021).
[51] E. T.Alger, D. A.Callahan, S. H.Glenzer, G.Grim, J. L.Kline, A. J.MacKinnonet?al.. Cryogenic thermonuclear fuel implosions on the national ignition facility. Phys. Plasmas, 19, 056318(2012).
[52] M. G.Capeluto, R.Hollinger, A.Moreau, H.Song, S.Wang, Y.Wanget?al.. Extreme ionization of heavy atoms in solid-density plasmas by relativistic second-harmonic laser pulses. Nat. Photonics, 14, 607-611(2020).
[53] T. D.Arber, K.Bennett, C. S.Brady, A.Lawrence-Douglas, M. G.Ramsay, N. J.Sircombeet?al.. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion, 57, 113001(2015).
[54] A. V.Arefiev, Z.Gong, A. P. L.Robinson, X. Q.Yan. Highly collimated electron acceleration by longitudinal laser fields in a hollow-core target. Plasma Phys. Controlled Fusion, 61, 035012(2019).
[55] Y.-X.Geng, L.Qing, Y.-R.Shou, M.-J.Wu, X.-H.Xu, J.-G.Zhuet?al.. Generating proton beams exceeding 10 MeV using high contrast 60 TW laser. Chin. Phys. Lett., 35, 092901(2018).
[56] J.Meyer-Ter-Vehn, R.Ramis, R.Schmalz. MULTI— a computer code for one-dimensional multigroup radiation hydrodynamics. Comput. Phys. Commun., 49, 475-505(1988).
[57] G.-R.Han, X.Wang. Fabrication and characterization of anodic aluminum oxide template. Microelectron. Eng., 66, 166-170(2003).
[58] G.Cantono, Z.Chen, A.Permogorov, M.Salvadori, K.Svendsen, S.Vallièreset?al.. Enhanced laser-driven proton acceleration using nanowire targets. Sci. Rep., 11, 2226(2021).
[59] A.Beck, M.Chiaramello, J.Derouillat, A.Grassi, F.Pérez, T.Vinciet?al.. SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Comput. Phys. Commun., 222, 351-373(2018).
[60] D. P.Higginson, A.Link, A.Schmidt. A pairwise nuclear fusion algorithm for weighted particle-in-cell plasma simulations. J. Comput. Phys., 388, 439-453(2019).
[61] A.Bonasera, P.Burian, Z.Cao, C.Fu, D.Kong, P.Rubovi?et?al.. Measurements of D–D fusion neutrons generated in nanowire array laser plasma using Timepix3 detector. Nucl. Instrum. Methods Phys. Res., Sect. A, 985, 164680(2021).
[62] S.Glasstone, R. H.Lovberg. Controlled Thermonuclear Reactions: An Introduction to Theory and Experiment(1960).