Infrared and Laser Engineering, Volume. 51, Issue 5, 20220077(2022)

Double channels diffractive computational imaging spectrometer system

Haibo Zhao1...2, Yanli Liu1,2, Wenshuo Yang1,2, Yun Su1,2, Dahua Gao3, Quansen Sun4 and Huijie Zhao5 |Show fewer author(s)
Author Affiliations
  • 1Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • 2Key Laboratory for Advanced Optical Remote Sensing Technology of Beijing, Beijing 100094, China
  • 3School of Electronic Engineering, Xidian University, Xi'an 710007, China
  • 4School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • 5School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100094, China
  • show less

    The conventional diffraction spectrum imaging system adopts the single channel scheme, which mainly carries out simulation and spectral imaging experiments for simple graphic targets or gas targets with known spectral characteristics. When the target is a complex scene such as natural scene, the spectral solution effect and accuracy of the imaging system are difficult to ensure. For the imaging of complex scenery, a dual channel visible and near-infrared diffraction computational imaging spectrometer system was designed. Based on the conventional single channel diffraction imaging spectrometer system, adding a panchromatic camera imaging coluld provide panchromatic information and a priori knowledge of complex scenes for diffraction imaging channels. The data of the two channels were jointly processed to improve the final spectral data inversion effect and inversion accuracy. The system composition and basic principle were introduced, the system performance was analyzed, and the imaging process of the system was simulated by using the simulation program. A verification device for the principle of visible and near-infrared diffractive computational imaging spectrometer system was built in the laboratory. Spectral restoration was carried out on the visible and near-infrared aliasing spectral data of 450-800 nm. Using the spectral curve of the color plate tested by ocean optics spectrometer as the standard spectral line, compared with the restored spectral data, the average accuracy of the retrieved spectral data was better than 90%. Through theoretical analysis, system simulation and imaging experiment, the correctness and feasibility of the system principle were verified. It can obtain better spectral solution effect and accuracy of complex scenery, and improve the application potential and application value of diffraction imaging spectral system.

    Tools

    Get Citation

    Copy Citation Text

    Haibo Zhao, Yanli Liu, Wenshuo Yang, Yun Su, Dahua Gao, Quansen Sun, Huijie Zhao. Double channels diffractive computational imaging spectrometer system[J]. Infrared and Laser Engineering, 2022, 51(5): 20220077

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Infrared technology and application

    Received: Jan. 29, 2022

    Accepted: --

    Published Online: Jun. 14, 2022

    The Author Email:

    DOI:10.3788/IRLA20220077

    Topics