Infrared and Laser Engineering, Volume. 51, Issue 12, 20220180(2022)

Study on thermal characteristics of Dewar flexible shell structure for cryogenic optics

Junlin Chen1,2, Xiaokun Wang1,2、*, Zhijiang Zeng1,2、*, Haiyong Zhu1,2, Peng Ji1,2, Hanzhe Wang2, and Xingjian Hu2
Author Affiliations
  • 1State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less

    In order to meet the requirements of low background, low power consumption of low temperature optical system and high environmental adaptability of infrared detector refrigeration components, the design idea of the Dewar main body (window, window cap and enclosure) maintaining low temperature and flexible adiabatic connection with the cooling surface of the cryocooler expander is proposed. Aiming at the characteristics of the engineering application of the Dewar flexible shell for cryogenic optics, this paper takes a Dewar component of a long-wavelength 12.5 μm 2 000 element infrared detector for cryogenic optics as an example. This paper proposes a bellows as a flexible shell for adiabatic connection. The design of thermal insulation, mechanics and associated heat leakage of Dewar flexible bellows is highlighted. The thermal characteristics of bellows under different thermal load conditions are verified, and the minimum temperature gradient is 37.22 K, the adiabatic thermal resistance is 1142 K/W, and the error is 37%. In order to comprehensively evaluate the performance of the flexible shell structure, the thermal vacuum and qualification-level mechanical tests are carried out for a long-wavelength 12.5 μm 2 000 element detector flexible shell Dewar component for cryogenic optics. The test results show that when the low temperature window works at 200 K, the detector works at 60 K, the heat leakage of the Dewar is 544 mW. Compared with the normal temperature condition, the power consumption of the cryocooler is reduced by 53% when working in low temperature condition,, and the 4 g random mechanical test is passed, which verifies the low temperature optics. It is reasonable and feasible to use the Dewar flexible bellows shell model, which provides an important reference for the subsequent structural engineering application of the Dewar flexible shell for cryogenic optics.

    Tools

    Get Citation

    Copy Citation Text

    Junlin Chen, Xiaokun Wang, Zhijiang Zeng, Haiyong Zhu, Peng Ji, Hanzhe Wang, Xingjian Hu. Study on thermal characteristics of Dewar flexible shell structure for cryogenic optics[J]. Infrared and Laser Engineering, 2022, 51(12): 20220180

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Infrared technology and application

    Received: Mar. 14, 2022

    Accepted: --

    Published Online: Jan. 10, 2023

    The Author Email: Wang Xiaokun (wxk-sitp@sitp.ac.cn), Zeng Zhijiang (Jonzeng@sitp.ac.cn)

    DOI:10.3788/IRLA20220180

    Topics