[1] J.Nuckolls, A.Thiessen, L.Wood, G.Zimmerman. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139-142(1972).
[2] J.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933-4024(1995).
[3] R.Koch, J.Ongena, R.Wolf, H.Zohm. Magnetic-confinement fusion. Nat. Phys., 12, 398-410(2016).
[4] S.Atzeni, J.Meyer-Ter-Vehn. The Physics of Inertial Fusion(2004).
[5] G.Mourou, D.Strickland. Compression of amplified chirped optical pulses. Opt. Commun., 55, 447-449(1985).
[6] R.Dautray, C.Labaune, D.Pesme, and R.Dautray, J. P.Watteau. La Fusion Thermonucleaire Inertielle par Laser(1993).
[7] F. N.Beg, A. R.Bell, A. E.Dangor, C. N.Danson, A. P.Fews, P.Lee, P. A.Norreys, S. J.Rose. Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets. Phys. Rev. Lett., 73, 1801-1804(1994).
[8] V. Y.Bychenkov, K.Flippo, S.Gu, A.Maksimchuk, D.Umstadter. Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett., 84, 4108-4111(2000).
[9] E. M.Campbell, T. E.Cowan, S. P.Hatchett, E. A.Henry, J.Johnson, M. H.Key, A. B.Langdon, B. F.Lasinski, A.MacKinnon, A.Offenberger, D. M.Pennington, M. D.Perry, T. W.Phillips, M.Roth, T. C.Sangster, M. S.Singh, R. A.Snavely, M. A.Stoyer, S. C.Wilks, K.Yasuike. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett., 85, 2945-2948(2000).
[10] P.Antici, P.Audebert, M.Borghesi, E.Brambrink, C. A.Cecchetti, E.d’Humières, J.Fuchs, M.Kaluza, E.Lefebvre, V.Malka, M.Manclossi, S.Meyroneinc, P.Mora, H.Pépin, J.Schreiber, T.Toncian. Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys., 2, 48-54(2006).
[11] V. I.Kukulin, V. T.Voronchev. Nuclear-physics aspects of controlled thermonuclear fusion: Analysis of promising fuels and gamma-ray diagnostics of hot plasma. Phys. At. Nucl., 63, 2051-2066(2000).
[12] W. M.Nevins. A review of confinement requirements for advanced fuels. J. Fusion Energy, 17, 25-32(1998).
[13] P.Andreoli, D.Batani, D.Giulietti et al. Laser-plasma energetic particle production for aneutronic nuclear fusion experiments. Nucl. Instrum. Methods Phys. Res., Sect. B, 402, 373-375(2017).
[14] C.Baccou, S.Depierreux, V.Yahia et al. New scheme to produce aneutronic fusion reactions by laser-accelerated ions. Laser Part. Beams, 33, 117-122(2015).
[15] B.Nayak. Reactivities of neutronic and aneutronic fusion fuels. Ann. Nucl. Energy, 60, 73-77(2013).
[16] J.Gruenwald. Proposal for a novel type of small scale aneutronic fusion reactor. Plasma Phys. Controlled Fusion, 59, 025011(2016).
[17] H. W.Becker, C.Rolfs, H. P.Trautvetter. Low-energy cross sections for 11B(p,3α). Z. Phys. A: At. Nucl., 327, 341-355(1987).
[18] R. C.Kirkpatrick, J. A.Wheeler. The physics of DT ignition in small fusion targets. Nucl. Fusion, 21, 389-401(1981).
[19] M. W.Binderbauer, H. J.Monkhorst, N.Rostoker. Colliding beam fusion reactor. Science, 278, 1419-1422(1997).
[20] S.Eliezer, H.Hora, G. H.Miley, N.Nissim. Pressure of picosecond CPA laser pulses substitute ultrahigh thermal pressures to ignite fusion. High Energy Density Phys., 35, 100739(2020).
[21] L. R.Benedetti, C. R.Brune, J. A.Caggiano, D. T.Casey, M.Chiarappa-Zucca, D.Dearborn, L.Divol, J. A.Frenje, M.Gatu-Johnson, G. P.Grim, R.Hatarik, D. M.Holunga, L. B.Hopkins, N.Izumi, S. F.Khan, T. R.Kohut, G. A.Kyrala, S.LePape, T.Ma, S.MacLaren, D. P.McNabb, J. M.McNaney, N. B.Meezan, A.Pak, T. G.Parham, J. E.Pino, B. A.Remington, J.Salmonson, D. B.Sayre, V. A.Smalyuk, B. K.Spears, R. E.Tipton, C. R.Weber, C. B.Yeamans. Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion. Nat. Phys., 13, 1227-1231(2017).
[22] J.-L.Bourgade, T.Buczek, G. A.Chandler, T.Clancy, M.Cruz, L.Disdier, T.Duffy, M. J.Eckart, M.Fox, V. Y.Glebov, J. J.Haslam, C. J.Horsfield, J. D.Kilkenny, J. P.Knauer, O.Landoas, R. J.Leeper, R. A.Lerche, K. L.Marshall, J.McNaney, M. J.Moran, D.Munro, A.Pruyne, M.Romanofsky, T. C.Sangster, D.Schneider, M. J.Shoup, C.Stoeckl, W.Stoeffl, W.Theobald, D.Warwas, M.Yeoman, R.Zacharias. The National Ignition Facility neutron time-of-flight system and its initial performance (invited). Rev. Sci. Instrum., 81, 10D325(2010).
[23] C. T.Angell. Enabling in situ thermometry using transmission nuclear resonance fluorescence. Nucl. Instrum. Methods Phys. Res., Sect. B, 368, 9-14(2016).
[24] B.Shen, Y.Yu. Ultrafast measurements of ion temperature in high-energy-density plasmas by nuclear resonance fluorescence. Phys. Plasmas, 26, 062708(2019).
[25] C. P. J.Barty, S.Eliezer, L.Giuffrida, H.Hora, G. J.Kirchhoff, G.Korn, P.Lalousis, D.Margarone, J.-M.Martinez-Val, G. H.Miley, S.Moustaizis, N.Nissim, A.Picciotto. Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor. High Power Laser Sci. Eng., 4, e35(2016).
[26] T.Hartmann, P.Mohr, K.Vogt, S.Volz, A.Zilges. Electric dipole strength below the giant dipole resonance. AIP Conf. Proc., 610, 870-874(2002).
[27] Z. M.Dong, X. Z.Li, C. L.Liang. Studies on p+6Li fusion reaction using 3-parameter model. J. Fusion Energy, 31, 432-436(2012).
[28] Z.Abdollahi, M.Ghoranneviss, H.Hora, B.Malekynia, G. H.Miley, A.Salar Elahi. Laser fusion energy from p-7Li with minimized radioactivity. Laser Part. Beams, 30, 459-463(2012).
[29] T. H.Braid, Y.Eisen, D. F.Geesaman, W.Henning, D. G.Kovar, T. R.Ophel, M.Paul, F. W.Prosser, K. E.Rehm, S. J.Sanders, J. P.Schiffer, P.Sperr, S. L.Tabor, S.Vigdor, B.Zeidman. Systematics of carbon- and oxygen-induced fusion on nuclei with 12 ≤A≤ 19. Phys. Rev. C, 20, 1305(1979).
[30] A.Danagoulian, R. S.Kemp, R. R.Macdonald, J. R.Vavrek. Physical cryptographic verification of nuclear warheads. Proc. Natl. Acad. Sci. U. S. A., 113, 8618-8623(2016).
[31] A.Danagoulian, B. S.Henderson, J. R.Vavrek. Experimental demonstration of an isotope-sensitive warhead verification technique using nuclear resonance fluorescence. Proc. Natl. Acad. Sci. U. S. A., 115, 4363-4368(2018).
[32] C. P. J.Barty, C. A.Hagmann, F. V.Hartemann, D. P.McNabb, J.Pruet. Detecting clandestine material with nuclear resonance fluorescence. J. Appl. Phys., 99, 123102(2006).
[33] R.Hajima, T.Hayakawa, T.Kii, N.Kikuzawa, E.Minehara, H.Ohgaki, T.Shizuma, H.Toyokawa. Nondestructive detection of hidden chemical compounds with laser Compton-scattering gamma rays. Rev. Sci. Instrum., 80, 045110(2009).
[34] F. R.Metzger. Resonance fluorescence in nuclei. Prog. Nucl. Phys., 7, 54(1959).
[35] F.Burgy, D.Hulin, S.Kiselev, E.Lefebvre, V.Malka, K. T.Phuoc, A.Pukhov, A.Rousse, J.-P.Rousseau, R.Shah, D.Umstadter. Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett., 93, 135005(2004).
[36] J. R.Cary, R.Crowell, K. C.Harkay, Y.Li, K.Németh, H.Shang, B.Shen. Laser-driven coherent betatron oscillation in a laser-wakefield cavity. Phys. Rev. Lett., 100, 095002(2008).
[37] S.Corde, J. P.Goddet, V.Malka, A.Rousse, S.Sebban, R. C.Shah, K.Ta Phuoc, A.Tafzi, C.Thaury. All-optical Compton gamma-ray source. Nat. Photonics, 6, 308-311(2012).
[38] S.Banerjee, S.Chen, G.Golovin, D.Haden, H.Karwowski, C.Liu, J.Silano, D.Umstadter, J.Zhang, B.Zhao. Generation of 9 MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light. Opt. Lett., 39, 4132-4135(2014).
[39] L.-M.Chen, P.Gibbon, Y.-T.Li, Z.-M.Sheng, W.-M.Wang, J.Zhang. Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime. Proc. Natl. Acad. Sci. U. S. A., 115, 9911-9916(2018).
[40] P.Gibbon, Y. T.Li, Z. M.Sheng, W. M.Wang. Integrated simulation approach for laser-driven fast ignition. Phys. Rev. E, 91, 013101(2015).
[41] P.Gibbon, Y. T.Li, Z. M.Sheng, W. M.Wang, J.Zhang. Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects. Phys. Rev. E, 96, 013201(2017).
[42] S.Agostinelli, J.Allison, K.Amako, J.Apostolakis, H.Araujo, P.Arce, M.Asai, D.Axen, S.Banerjee, G.Barrand, F.Behner, L.Bellagamba, J.Boudreau, L.Broglia, A.Brunengo, H.Burkhardt, S.Chauvie, J.Chuma, R.Chytracek, G.Cooperman et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A, 506, 250-303(2003).
[43] D. L.Balabanski, H.-y.Lan, W.Luo, Y.Xu. Implementation of the n-body Monte-Carlo event generator into the Geant4 toolkit for photonuclear studies. Nucl. Instrum. Methods Phys. Res., Sect. A, 849, 49-54(2017).
[44] D. L.Balabanski, X. D.Huang, H. Y.Lan, W.Luo, S.Tan, Y.Xu, S. Q.Zhao, J. L.Zhou, Z. C.Zhu. Nuclear resonance fluorescence drug inspection. Sci. Rep., 11, 1306(2021).
[45] Z. Q.Chen, H.Hua, Y.Jin, X. Q.Li, Z. H.Li, J.Lin, D. W.Luo, X.Wang, C. G.Wu, H. Y.Wu, C.Xu, S. Q.Zhang. Performance of digital data acquisition system in gamma-ray spectroscopy. Nucl. Sci. Tech., 32, 79(2021).
[46] S.Akkoyun, A.Algora, B.Alikhani, F.Ameil, L.Arnold, A.Astier, A.Ata?, Y.Aubert, C.Aufranc, A.Austin, S.Aydin, F.Azaiez, S.Badoer, D. L.Balabanski, D.Barrientos, G.Baulieu, R.Baumann, D.Bazzacco, F. A.Beck, T.Beck, P.Bednarczyk, M.Bellato, M. A.Bentley, G.Benzoni, R.Berthier, L.Berti, R.Beunard, B.Birkenbach, P. G.Bizzeti, A. M.Bizzeti-Sona, J. M.Blasco, N.Blasi, D.Bloor, C.Boiano, M.Borsato, D.Bortolato, A. J.Boston, H. C.Boston, P.Bourgault, G.de Angelis, F.Le Blanc, G.Lo Bianco et al. AGATA—Advanced gamma tracking array. Nucl. Instrum. Methods Phys. Res., Sect. A, 668, 26-58(2012).
[47] J.Beller, B.Boisdeffre, M. O.Cernaianu, V.Derya, B.Loher, C.Matei, G.Pascovici, C.Petcu, N.Pietralla, C.Romig, D.Savran, G.Suliman, E.Udup, C. A.Ur, V.Werner, A.Zilges. Nuclear resonance fluorescence experiments at ELI-NP. Rom. Rep. Phys., 68, S483-S538(2016).
[48] H.-Y.Lan, W.Luo, Z.-H.Luo, T.Song, J.-L.Zhou, Z.-C.Zhu. Isotope-Sensitive Imaging of Special Nuclear Materials Using Computer Tomography Based on Scattering Nuclear Resonance Fluorescence. Phys. Rev. Applied, 16, 054048(2021).
[49] H.-Y.Lan, W.Luo, T.Song, J.-L.Zhang, J.-L.Zhou. Rapid interrogation of special nuclear materials by combining scattering and transmission nuclear resonance fluorescence spectroscopy. Nucl. Sci. Tech., 32, 84(2021).