Infrared and Laser Engineering, Volume. 47, Issue 9, 904003(2018)

Afterburning and infrared radiation effects of exhaust plumes for solid rocket motors

Li Xia1...2,3, Liu Jianguo1, Wang Jun2,3, and Liu Xingrun23 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less

    Exhaust plumes of solid rocket motors involve complex flow state, afterburning and radiation effects, which have an important role in the operations of detecting, indentifying, and tracking. To investigate the characteristics of afterburning and radiation effects under different flight conditions, the computational fluid dynamics method and the finite-rate ratio model were used to simulate the flow properties with chemical reactions, and line of sight method was utilized to solve the radiation transmission equations. The influence of afterburning effect on the radiation characteristics of different heights was analyzed. The results show that the afterburning effect can cause the flame temperature rise to 1 000 K, and increase the radiation brightness of the flame band more than 10 times. For different bands, the radiation brightness rises and then decreases along with the height. The maximal position is 20-30 km, with about 17 times radiation enhancement in the short wave 2.7 μm waveband and about 16 times in the 4.3 μm mid wave waveband. It can be seen that the contribution of the H2O molecule caused by the afterburning is greater than that of the CO2 molecule. Theses can provide reference for further theoretical research and engineering application.

    Tools

    Get Citation

    Copy Citation Text

    Li Xia, Liu Jianguo, Wang Jun, Liu Xingrun. Afterburning and infrared radiation effects of exhaust plumes for solid rocket motors[J]. Infrared and Laser Engineering, 2018, 47(9): 904003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 红外技术及应用

    Received: Apr. 18, 2018

    Accepted: May. 12, 2018

    Published Online: Oct. 6, 2018

    The Author Email:

    DOI:10.3788/irla201847.0904003

    Topics