[1] H.Kamerlingh Onnes. The superconductivity of mercury. Comm. Phys. Lab. Univ. Leiden, 122, 122(1911).
[2] L.Beauvais, F.Chen, C. W.Chu, L.Gao, Z. J.Huang, J. G.Lin, R. L.Meng, Y. Y.Sun, Y. Y.Xue. Study of superconductivity in the Hg-Ba-Ca-Cu-O system. Physica C, 213, 261(1993).
[3] F.Chen, C. W.Chu, J. H.Eggert, L.Gao, H. K.Mao, R. L.Meng, D.Ramirez, Q.Xiong, Y. Y.Xue. Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B, 50, 4260(1994).
[4] A.Continenza, P.Cudazzo, A.Floris, E. K. U.Gross, S.Massidda, G.Profeta, A.Sanna. Ab initio description of high-temperature superconductivity in dense molecular hydrogen. Phys. Rev. Lett., 100, 257001(2008).
[5] T.Cui, Z.He, Q.Li, Y.Ma, Y.Niu, Y.Wang, L.Zhang, G.Zou. Ab initio prediction of superconductivity in molecular metallic hydrogen under high pressure. Solid State Commun., 141, 610(2007).
[6] H. Y.Geng. Public debate on metallic hydrogen to boost high pressure research. Matter Radiat. Extremes, 2, 275(2017).
[7] D. M.Ceperley, J. M.McMahon. High-temperature superconductivity in atomic metallic hydrogen. Phys. Rev. B, 84, 144515(2011).
[8] P.Dalladay-Simpson, E.Gregoryanz, R. T.Howie, C.Ji, B.Li, H.-K.Mao. Everything you always wanted to know about metallic hydrogen but were afraid to ask. Matter Radiat. Extremes, 5, 038101(2020).
[9] N. W.Ashcroft. Metallic hydrogen: A high-temperature superconductor?. Phys. Rev. Lett., 21, 1748(1968).
[10] A.Continenza, P.Cudazzo, A.Floris, E. K. U.Gross, S.Massidda, G.Profeta, A.Sanna. Electron-phonon interaction and superconductivity in metallic molecular hydrogen. II. Superconductivity under pressure. Phys. Rev. B, 81, 134506(2010).
[11] D. M.Ceperley, J. M.McMahon. Erratum: High-temperature superconductivity in atomic metallic hydrogen. Phys. Rev. B, 85, 219902(2012).
[12] N. W.Ashcroft. Hydrogen dominant metallic alloys: High temperature superconductors?. Phys. Rev. Lett., 92, 187002(2004).
[13] L.Han-Yu, M.Yan-Ming, S.Ying. Progress on hydrogen-rich superconductors under high pressure. Acta Phys. Sin., 70, 017407(2021).
[14] R.Arita, L.Boeri, M.Eremets, J. A.Flores-Livas, G.Profeta, A.Sanna. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep., 856, 1(2020).
[15] I. A.Kruglov, A. G.Kvashnin, A. R.Oganov, I. A.Savkin, D. V.Semenok. On distribution of superconductivity in metal hydrides. Curr. Opin. Solid State Mater. Sci., 24, 100808(2020).
[16] G.Gao, X.Li, Y.Li, Y.Ma, H.Wang. Hydrogen-rich superconductors at high pressures. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 8, e1330(2018).
[17] M.Chen, Y.Feng, W. J.Li, H. Y.Lv, C. L.Yang, G. H.Zhong. Superconductivity of light-metal hydrides. J. Chin. Chem. Soc., 66, 1246(2019).
[18] U.Pinsook. In search for near-room-temperature superconducting critical temperature of metal superhydrides under high pressure: A review. J. Met., Mater. Miner., 30, 31(2020).
[19] J.Chen, W.Cui, K.Gao, J.Hao, J.Kuang, Y.Li, J.Ma, J.Shi. Metal-element-incorporation induced superconducting hydrogen clathrate structure at high pressure. Chin. Phys. Lett., 38, 027401(2021).
[20] T.Cui, D.Duan, B.Liu, Y.Liu, Y.Ma, Z.Shao. Structure and superconductivity of hydrides at high pressures. Natl. Sci. Rev., 4, 121(2016).
[21] H.Liu, J.Lv, Y.Ma, Y.Sun, Y.Xie. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett., 123, 097001(2019).
[22] N.Dasenbrock-Gammon, M.Debessai, R. P.Dias, K. V.Lawler, R.McBride, A.Salamat, E.Snider, K.Vencatasamy, H.Vindana. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586, 373(2020).
[23] D.Chandra, R. J.Hemley, T.Muramatsu, M.Somayazulu, T. A.Strobel, V. V.Struzhkin, E.Vinitsky, W. K.Wanene. Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9. J. Phys. Chem. C, 119, 18007(2015).
[24] H.Liu, G.Yang, S.Zhang, L.Zhu. Structure and electronic properties of Fe2SH3 compound under high pressure. Inorg. Chem., 55, 11434(2016).
[25] L.Boeri, C.Kokail, W.von der Linden. Prediction of high-Tc conventional superconductivity in the ternary lithium borohydride system. Phys. Rev. Mater., 1, 074803(2017).
[26] T.Cui, D.Duan, X.Huang, D.Li, B.Liu, H.Liu, Y.Ma, Z.Shao, F.Tian, H.Yu. Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure. Phys. Rev. B, 96, 144518(2017).
[27] N. W.Ashcroft, R.Hoffmann, M.Rahm. Ternary gold hydrides: Routes to stable and potentially superconducting compounds. J. Am. Chem. Soc., 139, 8740(2017).
[28] T.Cui, D.-F.Duan, D.Li, B.-B.Liu, Y.Liu, Z.Liu, F.-B.Tian, S.-L.Wei. Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation. Front. Phys., 13, 137107(2018).
[29] A.Bergara, X.Du, J.Lin, G.Yang, S.Zhang, X.Zhang. Phase diagrams and electronic properties of B-S and H-B-S systems under high pressure. Phys. Rev. B, 100, 134110(2019).
[30] N. N.Degtyarenko, K. S.Grishakov, E. A.Mazur. Electron, phonon, and superconducting properties of yttrium and sulfur hydrides under high pressures. J. Exp. Theor. Phys., 128, 105(2019).
[31] A.Bergara, G.Gao, Y.Gao, J.He, X.Liang, H.Liu, C.Shao, R.Sun, Y.Tian, L.Wang, D.Yu, Y.Zhang, S.Zhao, Z.Zhao, X.-F.Zhou. First-principles study of crystal structures and superconductivity of ternary YSH6 and LaSH6 at high pressures. Phys. Rev. B, 100, 184502(2019).
[32] Y.Iijima, D.Meng, S.-i.Orimo, H.Saitoh, M.Sakata, T.Sato, K.Shimizu, S.Takagi. Superconductivity of the hydrogen-rich metal hydride Li5MoH11 under high pressure. Phys. Rev. B, 99, 024508(2019).
[33] L.Boeri, S.Di Cataldo, W.von der Linden. Phase diagram and superconductivity of calcium borohyrides at extreme pressures. Phys. Rev. B, 102, 014516(2020).
[34] H.-L.Chen, X.Guo, K. M.Ho, W.-C.Lu, C. Z.Wang, R.-L.Wang. Stability and superconductivity of TiPHn (n = 1–8) under high pressure. Phys. Lett. A, 384, 126189(2020).
[35] C.Chen, P.Huang, X.Li, H.Liu, Y.Ma, Y.Sun, Y.Xie. Chemically tuning stability and superconductivity of P–H compounds. J. Phys. Chem. Lett., 11, 935(2020).
[36] T.Iitaka, B.Jiang, H.Li, X.Li, Y.Sun, Y.Tian, Y.Xie, X.Zhong. Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation. Phys. Rev. B, 101, 174102(2020).
[37] T.Bi, N.Geng, X.Wang, Y.Yan, E.Zurek. A metastable CaSH3 phase composed of HS honeycomb sheets that is superconducting under pressure. J. Phys. Chem. Lett., 11, 9629(2020).
[38] J.Bang, H.Hosono, J.-Y.Hwang, S. W.Kim, S.-G.Kim, Y.Kim, K.Lee, K. H.Lee, S. Y.Lee, Y. H.Lee, Y.Ma, C. N.Nandadasa, J.Park, Y.Zhang. Ferromagnetic quasi-atomic electrons in two-dimensional electride. Nat. Commun., 11, 1526(2020).
[39] A. P.Drozdov, M. I.Eremets. High-temperature conventional superconductivity. Phys.-Usp., 59, 1154(2016).
[40] J. S.Tse, Y.Yao. Superconducting hydrogen sulfide. Chem. - Eur. J., 24, 1769(2018).
[41] T.Bi, E.Zurek. High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective. J. Chem. Phys., 150, 050901(2019).
[42] G. B.Bachelet, L.Boeri. Viewpoint: The road to room-temperature conventional superconductivity. J. Phys.: Condens. Matter, 31, 234002(2019).
[43] R. P.Dias, Y.Ge, R. J.Hemley, Y.Yao, F.Zhang. Hole-doped room-temperature superconductivity in H3S1−xZx (Z = C, Si). Mater. Today Phys., 15, 100330(2020).
[44] T.Cui, D.Duan, X.Huang, D.Li, B.Liu, Y.Liu, F.Tian, W.Tian, H.Yu, Z.Zhao. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 4, 6968(2014).
[45] A. P.Drozdov, M. I.Eremets, V.Ksenofontov, S. I.Shylin, I. A.Troyan. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73(2015).
[46] Y.Ma, R. J.Needs, F.Peng, C. J.Pickard, Y.Sun, Q.Wu. Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity. Phys. Rev. Lett., 119, 107001(2017).
[47] F. F.Balakirev, L.Balicas, S. P.Besedin, A. P.Drozdov, M. I.Eremets, D. E.Graf, E.Greenberg, D. A.Knyazev, P. P.Kong, M. A.Kuzovnikov, V. S.Minkov, S.Mozaffari, V. B.Prakapenka, M.Tkacz. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528(2019).
[48] M.Ahart, M.Baldini, Z. M.Geballe, R. J.Hemley, Y.Meng, A. K.Mishra, M.Somayazulu, V. V.Struzhkin. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).
[49] N. W.Ashcroft, R. J.Hemley, R.Hoffmann, H.Liu, I. I.Naumov. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. U. S. A., 114, 6990(2017).
[50] N.Dasenbrock-Gammon, R. P.Dias, K. V.Lawler, R.McBride, N.Meyers, A.Salamat, E.Snider, X.Wang, E.Zurek. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures. Phys. Rev. Lett., 126, 117003(2021).
[51] W.Chen, T.Cui, D.Duan, X.Huang, X.Li, B.Liu, A. R.Oganov, D. V.Semenok, H.Xie, D.Zhou. Superconducting praseodymium superhydrides. Sci. Adv., 6, eaax6849(2020).
[52] H.Liu, J.Lv, Y.Ma, Y.Sun. Theory-orientated discovery of high-temperature superconductors in superhydrides stabilized under high pressure. Matter Radiat. Extremes, 5, 068101(2020).
[53] X.-J.Chen, A.Gavriliuk, E.Greenberg, C.Ji, B.Li, H.-k.Mao, V.Prakapenka, V.Struzhkin, I.Troyan. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory. Matter Radiat. Extremes, 5, 028201(2020).
[54] C. W.Glass, N.Hansen, A. R.Oganov. USPEX—Evolutionary crystal structure prediction. Comput. Phys. Commun., 175, 713(2006).
[55] A. O.Lyakhov, A. R.Oganov, H. T.Stokes, Q.Zhu. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun., 184, 1172(2013).
[56] K.Tanaka, J. S.Tse, Y.Yao. Metastable high-pressure single-bonded phases of nitrogen predicted via genetic algorithm. Phys. Rev. B, 77, 052103(2008).
[57] J.Lv, Y.Ma, Y.Wang, L.Zhu. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B, 82, 094116(2010).
[58] J.Lv, Y.Ma, Y.Wang, L.Zhu. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun., 183, 2063(2012).
[59] D. C.Lonie, E.Zurek. XtalOpt: An open-source evolutionary algorithm for crystal structure prediction. Comput. Phys. Commun., 182, 372(2011).
[60] K. J.Michel, C.Wolverton. Symmetry building Monte Carlo-based crystal structure prediction. Comput. Phys. Commun., 185, 1389(2014).
[61] H.Gao, C.Liu, J.Sun, H.-T.Wang, K.Xia, D.Xing, J.Yuan. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci. Bull., 63, 817(2018).
[62] R.Arita, F.Belli, R.Bianco, M.Calandra, I.Errea, J. A.Flores-Livas, T.Koretsune, F.Mauri, L.Monacelli, A.Sanna, T.Tadano. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature, 578, 66(2020).
[63] M.Calandra, I.Errea, Y.Li, H.Liu, Y.Ma, F.Mauri, R. J.Needs, J. R.Nelson, C. J.Pickard, Y.Zhang. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature, 532, 81(2016).
[64] N.Bernstein, C. S.Hellberg, M. D.Johannes, I. I.Mazin, M. J.Mehl. What superconducts in sulfur hydrides under pressure and why. Phys. Rev. B, 91, 060511(2015).
[65] J.-H.Cho, J.Kim, K. W.Kim, L.Liu, C.Wang, S.Yi. Microscopic mechanism of room-temperature superconductivity in compressed LaH10. Phys. Rev. B, 99, 140501(2019).
[66] A. P.Drozdov, M.Einaga, M. I.Eremets, N.Hirao, T.Ishikawa, Y.Ohishi, M.Sakata, K.Shimizu, I. A.Troyan. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys., 12, 835(2016).
[67] Y.Ge, Y.Yao, F.Zhang. First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution. Phys. Rev. B, 93, 224513(2016).
[68] B. M.Klein, M. J.Mehl, D. A.Papaconstantopoulos, W. E.Pickett. Cubic H3S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur. Phys. Rev. B, 91, 184511(2015).
[69] T.Cui, D.Duan, X.Huang, D.Li, B.Liu, Y.Liu, Y.Ma, F.Tian, H.Yu. Pressure-induced decomposition of solid hydrogen sulfide. Phys. Rev. B, 91, 180502(2015).
[70] E. D.Bauer, N. J.Curro, E. A.Ekimov, N. N.Mel’nik, V. A.Sidorov, S. M.Stishov, J. D.Thompson. Superconductivity in diamond. Nature, 428, 542(2004).
[71] K.-W.Lee, W. E.Pickett. Superconductivity in boron-doped diamond. Phys. Rev. Lett., 93, 237003(2004).
[72] F.Chen, C.-W.Chu, A. M.Guloy, B.Lorenz, B.Lv, K.Sasmal, Y.-Y.Xue. Superconducting Fe-based compounds (A1−xSrx)Fe2As2 with A = K and Cs with transition temperatures up to 37 K. Phys. Rev. Lett., 101, 107007(2008).
[73] D. N.Argyriou, P. C.Canfield, T.Chatterji, E.Colombier, A. I.Goldman, T. C.Hansen, H. O.Jeschke, S. A. J.Kimber, A.Kreyssig, R. J.McQueeney, R.Valentí, J.Yan, F.Yokaichiya, Y.-Z.Zhang. Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2. Nat. Mater., 8, 471(2009).
[75] T.Iitaka, Y.Ma, K.Tanaka, J. S.Tse, H.Wang. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. U. S. A., 109, 6463(2012).
[76] J.-H.Cho, H.Jeon, C.Wang, S.Yi. Stability and bonding nature of clathrate H cages in a near-room-temperature superconductor LaH10. Phys. Rev. Mater., 5, 024801(2021).
[77] J.-H.Cho, S.Liu, C.Wang, S.Yi. Underlying mechanism of charge transfer in Li-doped MgH16 at high pressure. Phys. Rev. B, 102, 184509(2020).
[78] J.-H.Cho, C.Wang, S.Yi. Multiband nature of room-temperature superconductivity in LaH10 at high pressure. Phys. Rev. B, 101, 104506(2020).
[79] S. F.Elatresh, E. J.Nicol, T.Timusk. Optical properties of superconducting pressurized LaH10. Phys. Rev. B, 102, 024501(2020).
[80] P. H.Chang, M. J.Mehl, D. A.Papaconstantopoulos. High-temperature superconductivity in LaH10. Phys. Rev. B, 101, 060506(2020).
[81] J.-H.Cho, C.Wang, S.Yi. Pressure dependence of the superconducting transition temperature of compressed LaH10. Phys. Rev. B, 100, 060502(2019).
[82] A. P.Durajski, M.Kostrzewa, K. M.Szcz??niak, R.Szcz??niak. From LaH10 to room–temperature superconductors. Sci. Rep., 10, 1592(2020).
[83] X.-J.Chen, Y.-L.Hai, M.-J.Jiang, W.-J.Li, N.Lu, H.-L.Tian, X.-W.Yan, W.Yang, C.Zhang, G.-H.Zhong. Cage structure and near room-temperature superconductivity in TbHn (n = 1–12). J. Phys. Chem. C, 125, 3640(2021).
[84] R.Ahuja, T.Bovornratanaraks, W.Luo, U.Pinsook, P.Tsuppayakorn-aek. Superconductivity of superhydride CeH10 under high pressure. Mater. Res. Express, 7, 086001(2020).
[85] H.-L.Chen, W.-C.Lu, D.Wang, J.Wu, Q.-J.Zang, H.Zhang. Theoretical study on UH4, UH8 and UH10 at high pressure. Phys. Lett. A, 383, 774(2019).
[86] Z.-w.Gu, C.-l.Liu, J.Liu, C.-w.Sun, F.-l.Tan, X.-h.Wang, P.Zhang, J.-h.Zhao, F.-w.Zheng. Hydrogen clathrate structures in uranium hydrides at high pressures. ACS Omega, 6, 3946(2021).
[87] V. Y.Fominski, A. G.Ivanova, A. G.Kvashnin, A. R.Oganov, V. M.Pudalov, A. V.Sadakov, D. V.Semenok, O. A.Sobolevskiy, V.Svitlyk, I. A.Troyan. Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties. Mater. Today, 33, 36(2020).
[88] X.Feng, G.Gao, H.Liu, H.Wang, J.Zhang. Compressed sodalite-like MgH6 as a potential high-temperature superconductor. RSC Adv., 5, 59292(2015).
[89] J.Hao, Y.Li, H.Liu, Y.Ma, J. S.Tse, Y.Wang. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep., 5, 9948(2015).
[90] N. W.Ashcroft, R.Hoffmann, X.Ye, N.Zarifi, E.Zurek. High hydrides of scandium under pressure: Potential superconductors. J. Phys. Chem. C, 122, 6298(2018).
[91] R.Akashi, A.Bergara, R.Bianco, M.Calandra, I.Errea, A. G.Gavriliuk, E.Greenberg, A. G.Ivanova, A. G.Kvashnin, I. S.Lyubutin, F.Mauri, L.Monacelli, A. R.Oganov, V. B.Prakapenka, V. M.Pudalov, A. V.Sadakov, D. V.Semenok, O. A.Sobolevskiy, V. V.Struzhkin, I. A.Troyan. Anomalous high-temperature superconductivity in YH6. Adv. Mater., 33, 2006832(2021).
[92] T.Cui, D.Duan, D.Li, B.Liu, Z.Shao, H.Song, F.Tian, Y.Wang, X.Xiao, H.Xie. High-temperature superconductivity in ternary clathrate YCaH12 under high pressures. J. Phys.: Condens. Matter, 31, 245404(2019).
[93] A.Bergara, G.Gao, J.He, X.Liang, Y.Tian, L.Wang, B.Wen, Z.Zhao, X.-F.Zhou. Potential high-Tc superconductivity in CaYH12 under pressure. Phys. Rev. B, 99, 100505(2019).
[94] I. A.Kruglov, A. G.Kvashnin, A. R.Oganov, D. V.Semenok. Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors. J. Phys. Chem. Lett., 9, 1920(2018).
[95] H.Liu, K.Tanaka, J. S.Tse. Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure. Phys. Rev. B, 96, 100502(2017).
[96] T.Cui, D.Duan, X.Feng, S.Jiang, V. Z.Kresin, C. J.Pickard, S. A. T.Redfern, H.Song, H.Xie, Y.Yao, Z.Zhang. Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor. Phys. Rev. Lett., 125, 217001(2020).