Journal of Inorganic Materials, Volume. 34, Issue 3, 310(2019)
Thermoelectric Property of Zn-Sb Doped Mg2(Si,Sn) Alloys
As a type of medium-temperature thermoelectric materials, Mg2(Si,Sn) alloy thermoelectric materials have been widely concerned because of the low cost and environmental friendliness. Heavily Sb doping can effectively induce Mg vacancy so as to reduce the thermal conductivity in Mg2(Si,Sn)-based materials, but at the same time lead to a decrease of Seebeck coefficient. In this study, high-quality Mg2.12-ySi0.4Sn0.5Sb0.1Zny (y=0-0.025) samples were successfully synthesized by high temperature melting and vacuum hot-pressing method. Zn element was introduced into the heavily Sb-doped Mg2(Si,Sn) material to investigate the double doping effect on the electroacoustic transport properties. The results show that Zn-Sb double doping could effectively reduce the total thermal conductivity of Mg2(Si,Sn)-based materials by obviously suppressing the electronic thermal conductivity and at the same time enhance the Seebeck coefficient of Zn-doped samples, so as to compensate for the loss of electrical conductivity, and maintain high electrical performance. Significantly optimized thermal conductivity and electrical performance ultimately improve the thermoelectric figure of meritZT of the material. At 823 K, the maximum ZT of Mg2.095Si0.4Sn0.5Sb0.1Zn0.025 reached 1.42.
Get Citation
Copy Citation Text
Guan-Ting YU, Jia-Zhan XIN, Tie-Jun ZHU, Xin-Bing ZHAO, [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Thermoelectric Property of Zn-Sb Doped Mg2(Si,Sn) Alloys[J]. Journal of Inorganic Materials, 2019, 34(3): 310
Category: Research Articles
Received: Sep. 3, 2018
Accepted: --
Published Online: Sep. 26, 2021
The Author Email: