Acta Optica Sinica, Volume. 34, Issue 4, 432002(2014)

Inscription of Waveguides in Terbium Gallium Garnet Using Femtosecond Laser

Long Xuewen1,2、*, Bai Jing1,2, Liu Xin1,2, Zhao Wei1, and Cheng Guanghua1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less

    Femtosecond-laser-photolithography is a flexible avenue to fabricate three-dimensional photonic devices in transparent materials. Terbium gallium garnet is widely used because of its Faraday rotation. Femtosecond laser operated at 1 kHz with a central wavelength of 800 nm is used to write double line waveguide and circular depressed-cladding waveguide in terbium gallium garnet. The distributions of refractive index change are reconstructed,and propagation losses of the waveguides are measured. Only the double line waveguide shows polarization dependent optical guiding. The magneto-optic response of the waveguides is determined. The rotation of plane of polarization cannot be occurred in double line waveguide under externally applied magnetic field ascribed to the phase mismatch of transvers electric (TE) mode and transverse magnetic (TM) mode. For the circular depressed-cladding waveguide, the plane of polarization is rotated under applied magnetic field. The inscribed double line and circular depressed-cladding waveguide in terbium gallium garnet are candidates for waveguide polarizer and magneto-optic device respectively, which are valuable for integrated optics.

    Tools

    Get Citation

    Copy Citation Text

    Long Xuewen, Bai Jing, Liu Xin, Zhao Wei, Cheng Guanghua. Inscription of Waveguides in Terbium Gallium Garnet Using Femtosecond Laser[J]. Acta Optica Sinica, 2014, 34(4): 432002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Ultrafast Optics

    Received: Oct. 22, 2013

    Accepted: --

    Published Online: Feb. 28, 2014

    The Author Email: Xuewen Long (longxuewen@126.com)

    DOI:10.3788/aos201434.0432002

    Topics