[1] L.Rayleigh. Scientific Papers II, 200(1900).
[2] G. I.Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. London, Ser. A, 201, 192-196(1950).
[3] Y.Zhou. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep., 720–722, 1-136(2017).
[4] Y.Zhou. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep., 723–725, 1-160(2017).
[5] J. D.Lindl. Inertial Confinement Fusion(1998).
[6] S.Atzeni, J.Meyer-ter-Vehn. The Physics of Inertial Fusion: Beam Plasma Interaction Hydrodynamics, Hot Dense Mater(2004).
[7] R.Betti, O. A.Hurricane. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435-448(2016).
[8] K. L.Baker, D. A.Callahan, D. T.Casey, O. A.Hurricane, A. L.Kritcher, J. E.Ralph, H. F.Robey, J. S.Ross, C. V.Young, A. B.Zylstraet?al.. Burning plasma achieved in inertial fusion. Nature, 601, 542-548(2022).
[9] K.Baker, D.Callahan, D.Casey, D.Clark, L.Divol, T.D?ppner, M.Hohenberger, L.Hopkins, O.Hurricane, A.Kritcher, N.Meezan, A.Pak, S.Pape, J.Ralph, H.Robey, J.Ross, C.Weber, C.Young, A.Zylstra. Design of inertial fusion implosions reaching the burning plasma regime. Nat. Phys., 18, 251(2022).
[10] A.Burrows. Supernova explosions in the universe. Nature, 403, 727-733(2000).
[11] A. Y.Chtchelkanova, V. N.Gamezo, A. M.Khokhlov, E. S.Oran, R. O.Rosenberg. Thermonuclear supernovae: Simulations of the deflagration stage and their implications. Science, 299, 77(2003).
[12] F. W.Doss, R. P.Drake, K. A.Flippo, E.Giraldez, M. J.Grosskopf, T. A.Handy, E. C.Harding, C. M.Huntington, D.Kalantar, S. R.Klein, J.Kline, C. M.Krauland, C. C.Kuranz, S.MacLaren, G.Malamud, D. C.Marion, A. R.Miles, H. S.Park, T.Plewa, S.Prisbrey, K.Raman, B. A.Remington, H. F.Robey, A.Shimony, D.Shvarts, M. R.Trantham, R.Wallace, W. C.Wan. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants. Nat. Commun., 9, 1564(2018).
[13] B.Bachmann, K. L.Baker, L. R.Benedetti, E. J.Bond, D. A.Callahan, D. T.Casey, C. J.Cerjan, D. S.Clark, T.D?ppner, M. J.Edwards, D. N.Fittinghoff, J. A.Frenje, M.Gatu Johnson, G. P.Grim, S. W.Haan, R.Hatarik, D.Hoover, N.Izumi, S.Khan, K. N.Lafortune, O. L.Landen, T.Ma, B. J.MacGowan, A. G.MacPhee, F. E.Merrill, J. L.Milovich, S. R.Nagel, A.Nikroo, A.Pak, H.-S.Park, P. K.Patel, J. L.Peterson, H. F.Robey, D. B.Sayre, V. A.Smalyuk, B. K.Spears, P. L.Volegov, C. R.Weber, C. C.Widmayer, C. B.Yeamans. Improved performance of high areal density indirect drive implosions at the National Ignition Facility using a four-shock adiabat shaped drive. Phys. Rev. Lett., 115, 105001(2015).
[14] M. A.Barrios, D. K.Bradley, D. A.Callahan, C.Cerjan, G. W.Collins, S. N.Dixit, T.D?ppner, M. J.Edwards, R.Epstein, D. R.Farley, K. B.Fournier, S.Glenn, S. H.Glenzer, I. E.Golovkin, S. W.Haan, B. A.Hammel, A.Hamza, D. G.Hicks, N.Izumi, O. S.Jones, J. D.Kilkenny, J. L.Kline, G. A.Kyrala, O. L.Landen, T.Ma, J. J.MacFarlane, A. J.MacKinnon, R. C.Mancini, R. L.McCrory, N. B.Meezan, D. D.Meyerhofer, A.Nikroo, H. S.Park, J.Ralph, S. P.Regan, B. A.Remington, T. C.Sangster, H. A.Scott, V. A.Smalyuk, P. T.Springer, L. J.Suter, R. P.Town. Hot-spot mix in ignition-scale inertial confinement fusion targets. Phys. Rev. Lett., 111, 045001(2013).
[15] J.Edwards, O.Landen, J.Lindl, E.Moses. Review of the National Ignition Campaign 2009–2012. Phys. Plasmas, 21, 020501(2014).
[16] D. A.Callahan, D. T.Casey, P. M.Celliers, C.Cerjan, E. L.Dewald, T. R.Dittrich, T.D?ppner, D. E.Hinkel, L. F. B.Hopkins, O. A.Hurricane, J. L.Kline, S.Le Pape, T.Ma, A. G.MacPhee, J. L.Milovich, A.Pak, H.-S.Park, P. K.Patel, B. A.Remington, J. D.Salmonson, P. T.Springer, R.Tommasini. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343-348(2014).
[17] T. L.Bunn, L. C.Carlson, D. T.Casey, T.D?ppner, R. J.Dylla-Spears, B. J.Kozioziemski, A. G.MacPhee, A.Nikroo, H. F.Robey, J. D.Sater, V. A.Smalyuk, C. R.Weber. First measurements of fuel-ablator interface instability growth in inertial confinement fusion implosions on the National Ignition Facility. Phys. Rev. Lett, 117, 075002(2016).
[18] J.Sanz. Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion. Phys. Rev. Lett., 73, 2700-2703(1994).
[19] R.Betti, V. N.Goncharov, R. L.McCrory, P.Sorotokin, C. P.Verdon. Self-consistent stability analysis of ablation fronts in inertial confinement fusion. Phys. Plasmas, 3, 2122(1996).
[20] R.Betti, V. N.Goncharov, R. L.McCrory, C. P.Verdon. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Phys. Plasmas, 5, 1446(1998).
[21] K.Mima, L.Montierth, R.Morse, H.Takabe. Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. Phys. Fluids, 28, 3676-3682(1985).
[22] S. G.Glendinning, S. W.Haan, B. A.Hammel, J. D.Kilkenny, J. P.Knauer, J. D.Lindl, D.Munro, B. A.Remington, C. P.Verdon, S. V.Weber. A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion. Phys. Plasmas, 1, 1379-1389(1994).
[23] R.Betti, V.Lobatchev. Ablative stabilization of the deceleration phase Rayleigh-Taylor instability. Phys. Rev. Lett., 85, 4522-4525(2000).
[24] B.Srinivasan, X.-Z.Tang. Mitigating hydrodynamic mix at the gas-ice interface with a combination of magnetic, ablative, and viscous stabilization. Europhys. Lett., 107, 65001(2014).
[25] S. W.Haan. Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes. Phys. Rev. A, 39, 5812-5825(1989).
[26] S. W.Haan. Weakly nonlinear hydrodynamic instabilities in inertial fusion. Phys. Fluids B, 3, 2349-2355(1991).
[27] D.Layzer. On the instability of superposed fluids in a gravitational field. Astrophys. J., 122, 1(1955).
[28] V. N.Goncharov. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett., 88, 134502(2002).
[29] R.Betti, J.Ramírez, R.Ramis, J.Sanz, R. P. J.Town. Nonlinear theory of the ablative Rayleigh-Taylor instability. Phys. Rev. Lett., 89, 195002(2002).
[30] R.Betti, J.Ramírez, R.Ramis, J.Sanz. Nonlinear theory of the ablative Rayleigh–Taylor instability. Plasma Phys. Controlled Fusion, 46, B367-B380(2004).
[31] R.Betti, J.Sanz. Bubble acceleration in the ablative Rayleigh-Taylor instability. Phys. Rev. Lett., 97, 205002(2006).
[32] H.Aluie, R.Betti, A.Frank, B.Liu, J.Sanz, R.Yan. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability. Phys. Plasmas, 23, 022701(2016).
[33] V. N.Goncharov, S. X.Hu, D. D.Meyerhofer, T. C.Sangster, D.Shvarts, S.Skupsky, V. A.Smalyuk. Validation of thermal-transport modeling with direct-drive, planar-foil acceleration experiments on omega. Phys. Rev. Lett., 101, 055002(2008).
[34] R.H?rm, L.Spitzer. Transport phenomena in a completely ionized gas. Phys. Rev., 89, 977-981(1953).
[35] A. R.Bell, R. G.Evans, D. J.Nicholas. Elecron energy transport in steep temperature gradients in laser-produced plasmas. Phys. Rev. Lett., 46, 243-246(1981).
[36] M.Holec, J.Nikl, S.Weber. Nonlocal transport hydrodynamic model for laser heated plasmas. Phys. Plasmas, 25, 032704(2018).
[37] M. A.Barrios, D. C.Eder, W. A.Farmer, D. E.Hinkel, O. S.Jones, R. L.Kauffman, G. D.Kerbel, J. M.Koning, O. L.Landen, N.Lemos, D. A.Liedahl, J. D.Moody, A. S.Moore, M. B.Schneider, D. J.Strozzi, L. J.Suter. Heat transport modeling of the dot spectroscopy platform on NIF. Plasma Phys. Controlled Fusion, 60, 044009(2018).
[38] D.Cao, D. H.Froula, R. J.Henchen, J.Katz, J. P.Palastro, W.Rozmus, M.Sherlock. Observation of nonlocal heat flux using Thomson scattering. Phys. Rev. Lett., 121, 125001(2018).
[39] H.Azechi, M.Honda, K.Meguro, K.Mima, N.Miyanaga, M.Nakai, K.Shigemori, H.Takabe. Measurements of Rayleigh-Taylor growth rate of planar targets irradiated directly by partially coherent light. Phys. Rev. Lett., 78, 250-253(1997).
[40] H.Azechi, M.Honda, R.Ishizaki, N.Miyanaga, M.Nakai, H.Nishimura, K.Shigemori, H.Shiraga, H.Takabe, J. G.Wouchuket?al.. Direct-drive hydrodynamic instability experiments on the GEKKO XII laser. Phys. Plasmas, 4, 4079-4089(1997).
[41] S. N.Dixit, S. G.Glendinning, B. A.Hammel, D. H.Kalantar, M. H.Key, J. D.Kilkenny, J. P.Knauer, D. M.Pennington, B. A.Remington, R. J.Wallace, S. V.Weber. Measurement of a dispersion curve for linear-regime Rayleigh-Taylor growth rates in laser-driven planar targets. Phys. Rev. Lett., 78, 3318-3321(1997).
[42] H.Azechi, N.Izumi, M.Matsuoka, M.Nakai, T.Sakaiya, K.Shigemori, H.Shiraga, A.Sunahara, H.Takabe, T.Yamanaka. Ablative Rayleigh-Taylor instability at short wavelengths observed with moiré interferometry. Phys. Rev. Lett., 88, 145003(2002).
[43] J. A.Frenje, V. N.Goncharov, S. X.Hu, D. D.Meyerhofer, R. D.Petrasso, T. C.Sangster, D.Shvarts, V. A.Smalyuk, C.Stoeckl, B.Yaakobi. Rayleigh-Taylor growth stabilization in direct-drive plastic targets at laser intensities of ∼1 × 1015 W/cm2. Phys. Rev. Lett., 101, 025002(2008).
[44] H.Azechi, M.Honda, K.Mima, M.Nakai, A.Nishiguchi, K.Shigemori. Effects of non-local electron thermal transport on ablative Rayleigh-Taylor instability. Fusion Eng. Des., 44, 205-208(1999).
[45] R. C.Malone, R. L.McCrory, R. L.Morse. Indications of strongly flux-limited electron thermal conduction in laser-target experiments. Phys. Rev. Lett., 34, 721(1975).
[46] M.Busquet, P. D.Nicola?, G. P.Schurtz. A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes. Phys. Plasmas, 7, 4238-4249(2000).
[47] P. L.Bhatnagar, E. P.Gross, M.Krook. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94, 511-525(1954).
[48] S.Atzeni, J.-L.Feugeas, J.Mallet, A.Marocchino, P. D.Nicola?, A.Schiavi, V.Tikhonchuk, M.Tzoufras. Comparison for non-local hydrodynamic thermal conduction models. Phys. Plasmas, 20, 022702(2013).
[49] J. P.Brodrick, C. P.Ridgers, M.Sherlock. A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion. Phys. Plasmas, 24, 082706(2017).
[50] J. P.Brodrick, A. V.Chankin, D.Del Sorbo, B.Dudson, R. J.Kingham, M. M.Marinak, J. T.Omotani, J. T.Parker, M. V.Patel, M. V.Umanskyet?al.. Testing nonlocal models of electron thermal conduction for magnetic and inertial confinement fusion applications. Phys. Plasmas, 24, 092309(2017).
[51] D.Cao, J.Delettrez, G.Moses. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations. Phys. Plasmas, 22, 082308(2015).
[52] H.Aluie, R.Betti, V.Gopalaswamy, R.Yan, H.Zhang. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers. Phys. Rev. E, 97, 011203(R)(2018).
[53] H.Aluie, R.Betti, D.Shvarts, R.Yan, H.Zhang, D.Zhao. Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions. Phys. Rev. Lett., 121, 185002(2018).
[54] H.Aluie, R.Betti, D.-J.Sun, Z.-H.Wan, J.Xin, R.Yan, H.Zhang, J.Zheng. Two mode coupling of the ablative Rayleigh-Taylor instabilities. Phys. Plasmas, 26, 032703(2019).
[55] B.Van Leer. On the relation between the upwind-differencing schemes of Godunov, Engquist–Osher and Roe. SIAM J. Sci. Stat. Comput., 5, 1-20(1984).
[56] W.Speares, M.Spruce, E. F.Toro. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4, 25-34(1994).
[57] J.-L.Feugeas, M.Grech, P.Nicola?, X.Ribeyre, G.Schurtz, V.Tikhonchuk. Modeling of two-dimensional effects in hot spot relaxation in laser-produced plasmas. Phys. Plasmas, 15, 062701(2008).
[58] H.Azechi, S.Fujioka, K.Mima, M.Nakai, K.Otani, T.Sakaiya, K.Shigemori, H.Shiraga, A.Sunahara. Reduction of the Rayleigh-Taylor instability growth with cocktail color irradiation. Phys. Plasmas, 14, 122702(2007).
[59] R.Betti, D. T.Casey, J.Frenje, J. D.Hager, S. X.Hu, C. K.Li, M. J.-E.Manuel, D. D.Meyerhofer, R. D.Petrasso, F. H.Séguin, V. A.Smalyuk. First measurements of Rayleigh-Taylor-induced magnetic fields in laser-produced plasmas. Phys. Rev. Lett., 108, 255006(2012).
[60] G.Dimonte, B.Srinivasan, X.-Z.Tang. Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas. Phys. Rev. Lett., 108, 165002(2012).
[61] J.Breil, C.Chenais-Popovics, F.Durut, J. L.Feugeas, C.Fourment, S.Gary, J. C.Gauthier, S.Hulin, P. H.Maire, P.Nicola?, O.Peyrusse, C.Reverdin, G.Schurtz, G.Soullié, F.Thais, V.Tikhonchuk, B.Villette. Revisiting nonlocal electron-energy transport in inertial-fusion conditions. Phys. Rev. Lett., 98, 095002(2007).