Laser and Particle Beams, Volume. 2023, Issue 3, 2868112(2023)

Modeling of a Liquid Leaf Target TNSA Experiment Using Particle-In-Cell Simulations and Deep Learning

B. Schmitz1, D. Kreuter2, O. Boine-Frankenheim1,3, and Daniele Margarone
Author Affiliations
  • 1Technische Universität Darmstadt Darmstadt Institut für Teilchenbeschleunigung und Elektromagnetische Felder (TEMF) Schlossgartenstr. 8 64289 Darmstadt Germany
  • 2University of Cambridge Department of Applied Mathematics and Theoretical Physics (DAMTP) Centre for Mathematical Sciences Wilberforce Road Cambridge CB3 0WA UK
  • 3GSI Helmholtzzentrum für Schwerionenforschung GmbH Planckstr. 1 64291 Darmstadt Germany
  • show less

    Liquid leaf targets show promise as high repetition rate targets for laser-based ion acceleration using the Target Normal Sheath Acceleration (TNSA) mechanism and are currently under development. In this work, we discuss the effects of different ion species and investigate how they can be leveraged for use as a possible laser-driven neutron source. To aid in this research, we develop a surrogate model for liquid leaf target laser-ion acceleration experiments, based on artificial neural networks. The model is trained using data from Particle-In-Cell (PIC) simulations. The fast inference speed of our deep learning model allows us to optimize experimental parameters for maximum ion energy and laser-energy conversion efficiency. An analysis of parameter influence on our model output, using Sobol’ and PAWN indices, provides deeper insights into the laser-plasma system.

    Tools

    Get Citation

    Copy Citation Text

    B. Schmitz, D. Kreuter, O. Boine-Frankenheim, Daniele Margarone. Modeling of a Liquid Leaf Target TNSA Experiment Using Particle-In-Cell Simulations and Deep Learning[J]. Laser and Particle Beams, 2023, 2023(3): 2868112

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 19, 2023

    Accepted: Mar. 31, 2023

    Published Online: Aug. 14, 2023

    The Author Email:

    DOI:10.1155/2023/2868112

    Topics