[1] A. S. T. Cross, Z. Gan, P. Gor’kov, D. Massiot. Seeking higher resolution and sensitivity for NMR of quadrupolar nuclei at ultrahigh magnetic fields. J. Am. Chem. Soc., 124, 5634(2002).
[2] L. G. Butler, J. L. Eilertsen, F. R. Fronczek, Z. Gan, R. W. Hall, A. A. Mrse, L. Negureanu, L. S. Simeral, F.-J. Wu. Structural characterization of Al10O6iBu16(μ-H)2, a high aluminum content cluster: Further studies of methylaluminoxane (MAO) and related aluminum complexes. Inorg. Chem., 46, 44(2007).
[3] F. Deng, Z. Gan, I. Hung, W. Li, F. Mentink-Vigier, G. Qi, Q. Wang, X. Wang, X. Wang, J. Xu. Mapping the oxygen structure of γ-Al2O3 by high-field solid-state NMR spectroscopy. Nat. Commun., 11, 3620(2020).
[4] H. W. Spiess. NMR spectroscopy: Pushing the limits of sensitivity. Angew. Chem., Int. Ed., 47, 639(2008).
[5] H. Liu, J. Liu, L. Qin, K. Wang, L. Wang, Q. Wang, Y. Wang, Y. D. B. Zhou. Generation of 32.35 T with an all-superconducting magnet at IEECAS(2020).
[6] J. R. Miller. The NHMFL 45-T hybrid magnet system: Past, present, and future. IEEE Trans. Appl. Supercond., 13, 1385(2003).
[7] W. G. Moulton, A. P. Reyes. Nuclear magnetic resonace in solids at very high magnetic fields. High Magn. Fields, 3, 185(2006).
[8] Y. Li, P. V. Malawey, J. V. Sweedler, A. G. Webb, A. M. Wolters. Multiple solenoidal microcoil probes for high-sensitivity, high-throughput nuclear magnetic resonance spectroscopy. Anal. Chem., 71, 4815(1999).
[9] D. Högemann, L. Josephson, V. Ntziachristos, R. Weissleder. High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjugate Chem., 13, 116(2002).
[10] T. Hou, M. A. Macnaughtan, D. Raftery, J. Xu. High-throughput nuclear magnetic resonance analysis using a multiple coil flow probe. Anal. Chem., 75, 5116(2003).
[11] R. Freeman, E. Kupče. New methods for fast multidimensional NMR. J. Biomol. NMR, 27, 101(2003).
[12] L. Ciobanu, H. Wang, A. Webb. Reduced data acquisition time in multi-dimensional NMR spectroscopy using multiple-coil probes. J. Magn. Reson., 173, 134(2005).
[13] R. Albrecht, A. Audrieth, C. Jones, J. Likos, C. T. Milling, J. A. Norcross, D. L. Olson, T. L. Peck, K. Ruan, D. Xu. Multiplexed NMR: An automated CapNMR dual-sample probe. Anal. Chem., 82, 7227(2010).
[14] M. R. Geller. Fundamentals of Physics(2013).
[15] K. Chiba, T. Fukase, T. Goto, M. Mori, T. Suzuki. High-field Cu/La-NMR study on high-Tc cuprate La2−xBaxCuO4 (x = 0.125). Physica B, 284-288, 657(2000).
[16] T. Adachi, N. E. Hussey, Y. Koike, E. V. Kurganova, I. Mouzopoulou, C. Panagopoulos, C. Proust, P. M. C. Rourke, Y. Tanabe, B. Vignolle, Y. Wang, X. Xu, U. Zeitler. Phase-fluctuating superconductivity in overdoped La2−xSrxCuO4. Nat. Phys., 7, 455(2011).
[17] D. A. Bonn, W. N. Hardy, N. Harrison, R. Liang, G. G. Lonzarich, C. H. Mielke, T. P. Murphy, E. Palm, S. E. Sebastian. A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor. Nature, 454, 200(2008).
[18] M. Huang, S. Li, X. Li, Y. Wu, X. Xiong, Z. Zhang. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol., 12, 1148(2017).
[19] J. G. Analytis, G. S. Boebinger, J.-H. Chu, I. R. Fisher, R. D. McDonald, S. C. Riggs. Two-dimensional Dirac fermions in a topological insulator: Transport in the quantum limit. Nat. Phys., 6, 960(2010).
[20] G. Chang, Z. Z. Du, Y. Feng, C. Guo, M. Z. Hasan, C.-H. Hsu, S.-M. Huang, S. Jia, C.-C. Lee, L. Li, H. Lin, Z. Lin, H. Liu, H. Lu, H.-Z. Lu, T. Neupert, C. M. Wang, J. Wang, X.-C. Xie, S.-Y. Xu, C. Zhang, C.-L. Zhang, J. Zhang. Magnetic-tunnelling-induced Weyl node annihilation in TaP. Nat. Phys., 13, 979(2017).
[21] T. Caldwell, P. L. Kuhns, W. G. Moulton, A. P. Reyes, P. N. Rogers, R. N. Shelton. High field NMR studies of NaV2O5 to 44.7 T. Int. J. Mod. Phys. B, 16, 3298(2008).
[22] M. H. Levitt. Spin Dynamics: Basics of Nuclear Magnetic Resonance(2002).
[23] C. Berthier, D. A. Bonn, W. N. Hardy, M. Horvatić, M.-H. Julien, S. Krämer, R. Liang, H. Mayaffre, T. Wu. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature, 477, 191(2011).
[24] D. Shaw. Fourier Transform NMR Spectroscopy(1984).
[25] S. Ahn, C. R. Bowers, W. Brey, Y.-Y. Lin, N. Murali, W. S. Warren. High-resolution, >1 GHz NMR in unstable magnetic fields. Phys. Rev. Lett., 85, 3732(2000).
[26] M. Bird, W. Brey, T. Cross, Z. Gan, P. Gor’kov, H.-T. Kwak, K. Shetty. High-field NMR using resistive and hybrid magnets. J. Magn. Reson., 191, 135(2008).
[27] W. W. Brey, M. Li, J. E. Samra, J. L. Schiano, K. K. Shetty. Reduction of magnetic field fluctuations in powered magnets for NMR using inductive measurements and sampled-data feedback control. J. Magn. Reson., 212, 254(2011).
[28] A. P. M. Kentgens, J. C. Maan, P. J. M. van Bentum, J. W. M. van Os. Strategies for solid-state NMR in high-field Bitter and hybrid magnets. Chem. Phys. Lett., 376, 338(2003).
[29] T. Fujito, A. Goto, M. Hamada, K. Hasegawa, K. Hashi, S. Hayashi, S. Ito, T. Kiyoshi, S. Matsumoto, T. Miki, T. Shimizu, H. Wada, M. Yoshikawa. Achievement of a 920-MHz high resolution NMR. J. Magn. Reson., 156, 318(2002).
[30] D. Eckert, H. Eschrig, J. Haase, K. H. Müller, H. Siegel, F. Steglich. High-field NMR in pulsed magnets. Solid State Nucl. Magn. Reson., 23, 263(2003).
[31] D. Eckert, H. Eschrig, J. Haase, K.-H. Müller, H. Siegel, F. Steglich. Nuclear magnetic resonance in pulsed high-field magnets. Concepts Magn. Reson., Part B, 19, 9(2003).
[32] D. Eckert, H. Eschrig, J. Haase, K.-H. Müller, H. Siegel, A. Simon, F. Steglich. NMR in pulsed high magnetic fields. J. Magn. Magn. Mater., 272-276, e1623-e1625(2004).
[33] J. Haase. First 2H NMR at 58 T. Appl. Magn. Reson., 27, 297(2004).
[34] D. Eckert, H. Eschrig, J. Haase, K.-H. Müller, H. Siegel, A. Simon, F. Steglich. NMR at the Frontier of pulsed high field magnets. Physica B, 346-347, 514(2004).
[35] B. Büchner, H. Eschrig, J. Haase, M. Kozlov, K.-H. Müller, H. Siegel, A. G. Webb. NMR in pulsed high magnetic fields at 1.3 GHz. J. Magn. Magn. Mater., 290-291, 438(2005).
[36] B. Büchner, H. Eschrig, J. Haase, M. B. Kozlov, K.-H. Müller, H. Siegel, A. G. Webb. 2 GHz 1H NMR in pulsed magnets. Solid State Nucl. Magn. Reson, 27, 206-208(2005).
[37] C. Baumann, J. Haase, M. B. Kozlov, A. G. Webb. 56 T 1H NMR at 2.4 GHz in a pulsed high-field magnet. Solid State Nucl. Magn. Reson., 28, 64(2005).
[38] M. Hagiwara, K. Katayama, S. Kawasaki, S. Kimura, K. Kindo, N. Nishihagi, M. Nishiyama, G. Zheng. Spin–echo NMR in pulsed high magnetic fields up to 48 T. J. Phys. Soc. Jpn., 78, 095001(2009).
[39] R. Kanno, M. Karppinen, S. Kawasaki, T. Motohashi, T. Ono, K. Shimada, H. Yamauchi, G. Zheng. Measurement of electron correlations in LixCoO2 (x = 0.0–0.35) using 59Co nuclear magnetic resonance and nuclear quadrupole resonance techniques. Phys. Rev. B, 79, 220514(2009).
[40] M. Braun, J. Haase, T. Herrmannsdörfer, E. Kampert, J. Kohlrautz, B. Meier, F. Wolff-Fabris, J. Wosnitza. Nuclear magnetic resonance apparatus for pulsed high magnetic fields. Rev. Sci. Instrum., 83, 083113(2012).
[41] M. Hagiwara, M. Kandatsu, K. Katayama, S. Kimura, K. Kindo, N. Nishihagi, G.-Q. Zheng. 59Co NMR at pulsed high magnetic fields. J. Low Temp. Phys., 159, 280(2010).
[42] E. Abou-Hamad, P. Bontemps, G. L. J. A. Rikken. NMR in pulsed magnetic field. Solid State Nucl. Magn. Reson., 40, 42(2011).
[43] P. Bontemps, G. L. J. A. Rikken, H. Stork. NMR in pulsed high-field magnets and application to high-TC superconductors. J. Magn. Reson., 234, 30(2013).
[44] A. D. Bianchi, J. Freudenberger, J. Haase, T. Herrmannsdörfer, N. Kozlova, L. Schultz, Y. Skourski, J. Wosnitza, S. Zherlitsyn, S. A. Zvyagin. Dresden pulsed magnetic field facility. J. Magn. Magn. Mater., 310, 2728(2007).
[45] R. Daou, J. Haase, T. Herrmannsdörfer, B. Meier, M. Nicklas, F. Steglich, F. Weickert, J. Wosnitza, S. Zherlitsyn. Implementation of specific-heat and NMR experiments in the 1500 ms long-pulse magnet at the Hochfeld–Magnetlabor Dresden. Meas. Sci. Technol., 23, 105001(2012).
[46] P. Frings, A. Orlova, G. L. J. A. Rikken, M. Suleiman. New high homogeneity 55 T pulsed magnet for high field NMR. J. Magn. Reson., 268, 82(2016).
[47] E. Auken, E. Dalgaard, J. J. Larsen. Adaptive noise cancelling of multichannel magnetic resonance sounding signals. Geophys. J. Int., 191, 88(2012).
[48] W. Chen, H. Ma, D. Yu, H. Zhang. SVD-based technique for interference cancellation and noise reduction in NMR measurement of time-dependent magnetic fields. Sensors, 16, 323(2016).
[49] T. Fujito, K. Hashi, T. Iijima, T. Shimizu, K. Takegoshi. High-resolution NMR with resistive and hybrid magnets: Deconvolution using a field-fluctuation signal. J. Magn. Reson., 184, 258(2007).
[50] T. Iijima, K. Takegoshi. Compensation of effect of field instability by reference deconvolution with phase reconstruction. J. Magn. Reson. Imaging, 191, 128(2008).
[51] S. Greiser, J. Haase, T. Herrmannsdörfer, B. Meier, F. Wolff-Fabris, J. Wosnitza. NMR signal averaging in 62 T pulsed fields. J. Magn. Reson., 210, 1(2011).
[52] E. L. Green, J. Haase, J. Kohlrautz, H. Kühne, S. Reichardt, J. Wosnitza. NMR shift and relaxation measurements in pulsed high-field magnets up to 58 T. J. Magn. Reson., 263, 1(2016).
[53] H. A. Dabkowska, B. D. Gaulin, E. L. Green, J. Haase, T. Herrmannsdörfer, J. Kohlrautz, H. Kühne, R. Stern, J. Wosnitza, Z. T. Zhang. Field-stepped broadband NMR in pulsed magnets and application to SrCu2(BO3)2 at 54 T. J. Magn. Reson., 271, 52(2016).
[54] B. R. Donald, J. Zeng, P. Zhou. Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data. J. Biomol. NMR, 50, 371(2011).
[55] X. Dong, Z. Gong, P. Huang, J. Sun, Q. Xing, J. Yang. Visualizing an ultra-weak protein–protein interaction in phosphorylation signaling. Angew. Chem., Int. Ed, 53, 11501-11505(2014).
[56] Z. Gong, D.-C. Guo, Z. Liu, C. Tang, W.-P. Zhang. Subtle dynamics of holo glutamine binding protein revealed with a rigid paramagnetic probe. Biochemistry, 53, 1403(2014).
[57] X. Dong, X.-H. Gu, W.-X. Jiang, C. Tang. Lanthanoid tagging via an unnatural amino acid for protein structure characterization. J. Biomol. NMR, 67, 273(2017).
[58] Z. Gong, X. Gu, D. Guo, C. Tang, J. Wang. Protein structural ensembles visualized by solvent paramagnetic relaxation enhancement. Angew. Chem., Int. Ed., 56, 1002(2020).
[59] Z. Gong, C. D. Schwieters, C. Tang. Theory and practice of using solvent paramagnetic relaxation enhancement to characterize protein conformational dynamics. Methods, 148, 48(2018).
[60] L. J. Berliner. The evolution of biomedical EPR (ESR). Biomed. Spectrosc. Imaging, 5, 5(2016).
[61] T. B. Cardon, S. M. Grosser, J. J. Inbaraj, M. Laryukhin, G. A. Lorigan. Determining the topology of integral membrane peptides using EPR spectroscopy. J. Am. Chem. Soc., 128, 9549(2006).
[62] H. N. Bachman, M. Eschrig, W. P. Halperin, P. Kuhns, V. F. Mitrovic, W. G. Moulton, A. P. Reyes, E. E. Sigmund. Spatially resolved electronic structure inside and outside the vortex cores of a high-temperature superconductor. Nature, 413, 501(2006).
[63] J. Bao, G. Cao, Z. Jin, J. Kang, L. Li, Y. Liu, J. Wang, Z. Xia, Z. Xu, Z. Zhu, H. Zuo. Temperature and angular dependence of the upper critical field in K2Cr3As3. Phys. Rev. B, 95, 014502(2017).
[64] L. Balicas, V. Barzykin, J. S. Brooks, L. P. Gor’kov, A. Kobayashi, H. Kobayashi, K. Storr, H. Tanaka, M. Tokumoto, S. Uji. Superconductivity in an organic insulator at very high magnetic fields. Phys. Rev. Lett., 87, 067002(2001).
[65] A. Kobayashi, H. Kobayashi, H. Shinagawa, H. Tanaka, Y. Terai, T. Terashima, M. Tokumoto, S. Uji, T. Yakabe. Magnetic-field-induced superconductivity in a two-dimensional organic conductor. Nature, 410, 908(2001).
[66] K. Asayama, K. Ishida, Y. Kitaoka, Y. Maeno, Z. Q. Mao, Y. Mori, H. Mukuda. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature, 396, 658(1998).
[67] E. D. Bauer, S. E. Brown, A. Chronister, C. W. Hicks, F. Jerzembeck, N. Kikugawa, Y. Luo, A. P. Mackenzie, A. Pustogow, S. Raghu, D. A. Sokolov, Y.-S. Su. Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance. Nature, 574, 72(2019).
[68] Y. Ando, M. Kriener, K. Matano, K. Segawa, G. Zheng. Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3. Nat. Phys., 12, 852(2016).
[69] R. A. Ferrell, P. Fulde. Superconductivity in a strong spin-exchange field. Phys. Rev., 135, A550(1964).
[70] A. I. Larkin, Y. N. Ovchinnikov. Density of states in inhomogeneous superconductors. Sov. Phys. JETP, 34, 1144(1972).
[71] Y. Matsuda, H. Shimahara. Fulde–Ferrell–Larkin–Ovchinnikov state in heavy fermion superconductors. J. Phys. Soc. Jpn., 76, 051005(2007).
[72] J. Brooks, S. Brown, E. Green, R. Kato, M. Kobayashi, P. Kuhns, A. Reyes, J. Schlueter, J. Wright, H. Yamamoto. Zeeman–driven phase transition within the superconducting state of κ-(BEDT-TTF)2Cu(NCS)2. Phys. Rev. Lett., 107, 087002(2011).
[73] C. Berthier, M. Horvatić, K. Kanoda, S. Krämer, H. Mayaffre, V. F. Mitrović, K. Miyagawa. Evidence of Andreev bound states as a hallmark of the FFLO phase in κ-(BEDT-TTF)2Cu(NCS)2. Nat. Phys., 10, 928(2014).
[74] S. E. Brown, G. Koutroulakis, H. Kühne, J. A. Schlueter, J. Wosnitza. Microscopic study of the Fulde–Ferrell–Larkin–Ovchinnikov state in an all-organic superconductor. Phys. Rev. Lett., 116, 067003(2016).
[75] M. Cheng, Z. Y. Meng, F. Pollmann, Y. Wang, X. Zhang. Quantum spin liquid with even ising gauge field structure on Kagome lattice. Phys. Rev. Lett., 121, 057202(2018).
[76] N. Ma, Z. Y. Meng, A. W. Sandvik, G. Sun, A. Vishwanath, C. Xu, Y. You. Dynamical signature of fractionalization at the deconfined quantum critical point. Phys. Rev. B, 98, 174421(2018).
[77] A. W. Sandvik, P. Weinberg, B. Zhao. Symmetry-enhanced discontinuous phase transition in a two-dimensional quantum magnet. Nat. Phys., 15, 678(2019).
[78] A. A. Aczel, M. Brando, A. Demuer, C. Dong, M. B. Gamża, V. O. Garlea, N. Harrison, Y. Kohama, R. Movshovich, H. Rosner, A. Steppke, M. B. Stone, A. A. Tsirlin, F. Weickert. Field-induced double dome and Bose–Einstein condensation in the crossing quantum spin chain system AgVOAsO4. Phys. Rev. B, 100, 104422(2019).
[79] M. M. Altarawneh, J. Bourg, J. Cooley, T. Ebihara, D. Graf, R. Hu, M. Kano, R. McDonald, C. Mielke, T. Murphy, E. Palm, C. Petrovic, K. Purcell, P. Schlottmann, S. W. Tozer. Pressure evolution of a field induced Fermi surface reconstruction and of the Neel critical field in CeIn3. Phys. Rev. B, 79, 214428(2009).
[80] D. Aoki, C. Berthier, N. Bruyant, T. Hattori, N. Higa, M. Horvatić, M. H. Julien, S. Kambe, S. Krämer, H. Mayaffre, A. Orlova, H. Sakai, I. Sheikin, Y. Tokunaga. High-field phase diagram of the heavy-fermion metal CeIn3: Pulsed-field NMR study on single crystals up to 56 T. Phys. Rev. B, 99, 085142(2019).
[81] F. Becca, C. Berthier, M. Horvatić, H. Kageyama, K. Kodama, F. Mila, S. Miyahara, M. Takigawa, Y. Ueda. Magnetic superstructure in the two-dimensional quantum antiferromagnet SrCu2(BO3)2. Science, 298, 395(2002).
[82] C. Berthier, M. Horvatić, S. Krämer, F. Lévy-Bertrand, F. Mila, I. Sheikin, M. Takigawa, H. K. Y. Ueda, T. Waki. Incomplete Devil’s staircase in the magnetization curve of SrCu2(BO3)2. Phys. Rev. Lett., 110, 067210(2013).
[83] C. Berthier, M. Horvatić, H. Kageyama, S. Matsubara, M. Takigawa, Y. Ueda. NMR evidence for the persistence of a spin superlattice beyond the 1/8 magnetization plateau in SrCu2(BO3)2. Phys. Rev. Lett., 101, 037202(2008).
[85] C. D. Batista, S. A. Crooker, H. A. Dabkowska, R. Daou, A. E. Feiguin, B. D. Gaulin, M. Jaime, A. Uchida, F. Weickert. Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2. Proc. Natl. Acad. Sci. U. S. A., 109, 012404(2012).
[86] N. Abe, P. Corboz, G. R. Foltin, A. Honecker, H. Kageyama, S. R. Manmana, Y. H. Matsuda, F. Mila, K. P. Schmidt, S. Takeyama. Magnetization of SrCu2(BO3)2 in ultrahigh magnetic fields up to 118 T. Phys. Rev. Lett., 111, 137204(2013).
[87] K. Nawa, M. Takigawa, M. Yoshida, K. Yoshimura. Anisotropic spin fluctuations in the quasi one-dimensional frustrated magnet LiCuVO4. J. Phys. Soc. Jpn., 82, 094709(2013).
[88] N. Büttgen, T. Fujita, M. Hagiwara, P. Kuhns, K. Nawa, A. Prokofiev, A. P. Reyes, L. E. Svistov, M. Takigawa, K. Yoshimura. Search for a spin-nematic phase in the quasi-one-dimensional frustrated magnet LiCuVO4. Phys. Rev. B, 90, 134401(2014).
[89] G. Chanda, D. I. Gorbunov, E. L. Green, M. Horvatić, S. Krämer, R. K. Kremer, J. M. Law, A. Orlova, G. L. J. A. Rikken, J. Wosnitza. Nuclear magnetic resonance signature of the spin-nematic phase in LiCuVO4 at high magnetic fields. Phys. Rev. Lett., 118, 247201(2017).
[90] Z. Hiroi, H. Ishikawa, K. Kindo, Y. Kohama, A. Matsuo, N. Shannon. Possible observation of quantum spin-nematic phase in a frustrated magnet. Proc. Natl. Acad. Sci. U. S. A., 116, 10686(2019).
[91] G. L. Kuang, S. F. Shao. The technologies and scientific researches of steady high magnetic field. Sci. Sin., 44, 1049(2014).
[92] Q. Cao, H. Ding, T. Ding, J. Han, X. Han, Y. Han, L. Li, Y. Lv, Z. Ouyang, Y. Pan, T. Peng, J. Wang, Z. Wang, Z. Xia, H. Xiao, Z. Zhu. The pulsed high magnetic field facility and scientific research at Wuhan National High Magnetic Field Center. Matter Radiat. Extremes, 2, 278(2017).
[93] N. Beckmann, L. Garrido. New Applications of NMR in Drug Discovery and Development(2013).
[94] A. G. Palmer. NMR characterization of the dynamics of biomacromolecules. Chem. Rev., 104, 3623(2004).
[95] R. D. A. Alvares, A. Hasabnis, P. M. Macdonald, R. S. Prosser. Quantitative detection of PEGylated biomacromolecules in biological fluids by NMR. Anal. Chem., 88, 3730(2016).
[96] M. J. Duer. Solid State NMR Spectroscopy: Principles and Applications(2002).
[97] C. Bonhomme, C. Gervais, D. Laurencin. Recent NMR developments applied to organic–inorganic materials. Prog. Nucl. Magn. Reson. Spectrosc., 77, 1(2014).
[99] F. Herlach, N. Miura. High Magnetic Fields: Science and Technology(2003).
[100] H. J. Boenig, L. J. Campbell, D. G. Rickel, J. B. Schillig, H. J. Schneider-Muntau, J. R. Sims. The NHMFL long-pulse magnet system-60-100 T. Physica B., 216, 218(1996).
[101] R. Grössinger, O. Mayerhofer, H. Sassik, M. Schrenk, E. Wagner. Austromag: Pulsed magnetic fields beyond 40 T. Physica B., 346-347, 609(2004).
[102] H. Ding, T. Ding, X. Duan, J. Hu, C. Jiang, L. Li, W. Liu, Y. Pan, Y. Xu. Design of a 135 MW power supply for a 50 T pulsed magnet. IEEE Trans. Appl. Supercond., 22, 5400504(2012).
[103] T. Ding, F. Hu, L. Li, Y. Lv, Y. Ma, Y. Pan, H. Xiao, S. Zhang. Development of a high-stability flat-top pulsed magnetic field facility. IEEE Trans. Power Electron., 29, 4532(2014).
[104] K. Kindo, Y. Kohama. Generation of flat-top pulsed magnetic felds with feedback control approach. Rev. Sci. Instrum., 86, 104701(2015).
[105] T. Ding, X. Han, Z. Wang, H. Xiao, J. Xie, S. Zhang. Realization of high-stability flat-top pulsed magnetic fields by a bypass circuit of IGBTs in the active region. IEEE Trans. Power Electron., 35, 2436(2020).
[106] F. Herlach, F. Jiang, L. Li, Y. Pan, T. Peng, H. Xiao, J. Zhao. Design and test of a flat-top magnetic field system driven by capacitor banks. Rev. Sci. Instrum., 85, 045106(2014).
[107] S. Chen, L. Deng, R. Huang, F. Jiang, S. Jiang, L. Li, T. Peng, S. Wang. Upgrade of the pulsed magnetic field system with flat-top at the WHMFC. IEEE Trans. Appl. Supercond., 30, 4900404(2020).
[108] H. Gao, Z. Zhang. Nuclear Magnetic Resonance(2008).
[109] M. Motokawa. Physics in high magnetic fields. Rep. Prog. Phys., 67, 1995(2004).
[110] P. L. Alireza, S. K. Goh, J. Haase, T. Meissner, D. Rybicki. High sensitivity nuclear magnetic resonance probe for anvil cell pressure experiments. Rev. Sci. Instrum., 80, 073905(2009).
[111] B. T. Bush, P. C. Canfield, N. J. Curro, T. Kissikov, M. Lawson, R. Sarkar. Nuclear magnetic resonance probe head design for precision strain control. Rev. Sci. Instrum., 88, 103902(2017).
[112] X.-T. Han, Q.-Y. Liu, J.-F. Wang, M. Yang, H.-K. Zuo. Electrical transport measurement system in pulsed high magnetic field based on rotation sample rod. Acta Phys. Sin., 68, 230701(2019).
[113] A. Brinkmann, H. Janssen, A. P. M. Kentgens, P. J. M. van Bentum, E. R. H. van Eck. Microcoil high-resolution magic angle spinning NMR spectroscopy. J. Am. Chem. Soc., 128, 8722(2006).
[114] A. G. Webb. Radiofrequency microcoils for magnetic resonance imaging and spectroscopy. J. Magn. Reson., 229, 55(2013).