Frontiers of Optoelectronics, Volume. 9, Issue 4, 621(2016)

Design of temperature insensitive in vivo strain sensor using multilayer single mode optical fiber

F. MAKOUEI and S. MAKOUEI*
Author Affiliations
  • Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 51664, Iran
  • show less

    Bone strain measurement is a case of interest and demanding task for osteogenic adaption responses. In this paper, a novel biocompatible optical sensor for the bone axial strain measurement was proposed. In case modern multilayer single mode WII type optical fibers are well designed, they exhibit superior characteristics compared to conventional metal strain gauges (SGs). Furthermore, they could be strong competitors for SGs based on fiber Bragg grating (FBG) devices. In this study, mode field diameter (MFD) was selected as the indirect parameter for sensing task, which was totally a new approach. The strain sensitivity of 70.7733 pm/με was obtained. Moreover, temperature sensitivity was –3.0031 ×10–6 pm/°C, which was negligible and removed the temperature compensation complexity for the sensor structure presented. The satisfactory property achieved for the designed sensor is as a result of multilayer fiber’s complicated structure as well as the design procedure based on evolutionary genetic algorithm (GA). In addition, the sensor demonstrated a reliable performance as its sensitivity was independent of the magnitude of the applied load.

    Tools

    Get Citation

    Copy Citation Text

    F. MAKOUEI, S. MAKOUEI. Design of temperature insensitive in vivo strain sensor using multilayer single mode optical fiber[J]. Frontiers of Optoelectronics, 2016, 9(4): 621

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Jun. 9, 2015

    Accepted: Dec. 5, 2015

    Published Online: Mar. 9, 2017

    The Author Email: MAKOUEI S. (makouei@tabrizu.ac.ir)

    DOI:10.1007/s12200-016-0537-z

    Topics