[1] L Allen, MW Beijersbergen, RJC Spreeuw et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A, 45, 8185-8189(1992).
[2] MB Pu, X Li, XL Ma et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv, 1, e1500396(2015).
[3] YJ Shen, XJ Wang, ZW Xie et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl, 8, 90(2019).
[4] XY Fang, HR Ren, KY Li et al. Nanophotonic manipulation of optical angular momentum for high-dimensional information optics. Adv Opt Photonics, 13, 772-833(2021).
[5] YH Guo, SC Zhang, MB Pu et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl, 10, 63(2021).
[6] YX Zhang, XF Liu, H Lin et al. Ultrafast multi-target control of tightly focused light fields. Opto-Electron Adv, 5, 210026(2022).
[7] A Porfirev, S Khonina, A Ustinov et al. Vectorial spin-orbital Hall effect of light upon tight focusing and its experimental observation in azopolymer films. Opto-Electron Sci, 2, 230014(2023).
[8] L Paterson, MP MacDonald, J Arlt et al. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).
[9] DG Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).
[10] KI Willig, SO Rizzoli, V Westphal et al. STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440, 935-939(2006).
[11] XG Luo. Principles of electromagnetic waves in metasurfaces. Sci China Phys, Mech Astron, 58, 594201(2015).
[12] A Nicolas, L Veissier, L Giner et al. A quantum memory for orbital angular momentum photonic qubits. Nat Photonics, 8, 234-238(2014).
[13] HR Ren, XP Li, QM Zhang et al. On-chip noninterference angular momentum multiplexing of broadband light. Science, 352, 805-809(2016).
[14] XY Fang, HR Ren, M Gu. Orbital angular momentum holography for high-security encryption. Nat Photonics, 14, 102-108(2020).
[15] M Uchida, A Tonomura. Generation of electron beams carrying orbital angular momentum. Nature, 464, 737-739(2010).
[16] J Verbeeck, H Tian, P Schattschneider. Production and application of electron vortex beams. Nature, 467, 301-304(2010).
[17] BJ McMorran, A Agrawal, IM Anderson et al. Electron vortex beams with high quanta of orbital angular momentum. Science, 331, 192-195(2011).
[18] V Grillo, GC Gazzadi, E Mafakheri et al. Holographic generation of highly twisted electron beams. Phys Rev Lett, 114, 034801(2015).
[19] XY Yuan, Q Xu, YH Lang et al. Tailoring spatiotemporal dynamics of plasmonic vortices. Opto-Electron Adv, 6, 220133(2023).
[20] TC Petersen, M Weyland, DM Paganin et al. Electron vortex production and control using aberration induced diffraction catastrophes. Phys Rev Lett, 110, 033901(2013).
[21] A Béché, Boxem R Van, Tendeloo G Van et al. Magnetic monopole field exposed by electrons. Nat Phys, 10, 26-29(2014).
[22] J Harris, V Grillo, E Mafakheri et al. Structured quantum waves. Nat Phys, 11, 629-634(2015).
[23] KY Bliokh, IP Ivanov, G Guzzinati et al. Theory and applications of free-electron vortex states. Phys Rep, 690, 1-70(2017).
[24] M Mousley, G Thirunavukkarasu, M Babiker et al. Robust and adjustable C-shaped electron vortex beams. New J Phys, 19, 063008(2017).
[25] YQ Yang, A Forbes, LC Cao. A review of liquid crystal spatial light modulators: devices and applications. Opto-Electron Sci, 2, 230026(2023).
[26] I Freund. Optical vortices in Gaussian random wave fields: statistical probability densities. J Opt Soc Am A, 11, 1644-1652(1994).
[27] I Freund, V Freilikher. Parameterization of anisotropic vortices. J Opt Soc Am A, 14, 1902-1910(1997).
[28] JF Nye, MV Berry. Dislocations in wave trains. Proc Roy Soc A Math Phys Eng Sci, 336, 165-190(1974).
[29] TR Harvey, JS Pierce, AK Agrawal et al. Efficient diffractive phase optics for electrons. New J Phys, 16, 093039(2014).
[30] V Grillo, E Karimi, GC Gazzadi et al. Generation of nondiffracting electron Bessel beams. Phys Rev X, 4, 011013(2014).
[31] A Polman, M Kociak, García de Abajo F Javier. Electron-beam spectroscopy for nanophotonics. Nat Mater, 18, 1158-1171(2019).
[32] RX Yu, PC Huo, MZ Liu et al. Generation of perfect electron vortex beam with a customized beam size independent of orbital angular momentum. Nano Lett, 23, 2436-2441(2023).
[33] J Verbeeck, T He, Tendeloo G Van. How to manipulate nanoparticles with an electron beam. Adv Mater, 25, 1114-1117(2013).
[34] S Lloyd, M Babiker, J Yuan. Quantized orbital angular momentum transfer and magnetic dichroism in the interaction of electron vortices with matter. Phys Rev Lett, 108, 074802(2012).
[35] D Ugarte, C Ducati. Controlling multipolar surface Plasmon excitation through the azimuthal phase structure of electron vortex beams. Phys Rev B, 93, 205418(2016).
[36] G Guzzinati, A Béché, H Lourenço-Martins et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat Commun, 8, 14999(2017).
[37] CW Clark, R Barankov, MG Huber et al. Controlling neutron orbital angular momentum. Nature, 525, 504-506(2015).
[38] I Madan, GM Vanacore, S Gargiulo et al. The quantum future of microscopy: wave function engineering of electrons, ions, and nuclei. Appl Phys Lett, 116, 230502(2020).
[39] VE Lembessis, D Ellinas, M Babiker et al. Atom vortex beams. Phys Rev A, 89, 053616(2014).
[40] A Luski, Y Segev, R David et al. Vortex beams of atoms and molecules. Science, 373, 1105-1109(2021).