Journal of Inorganic Materials, Volume. 35, Issue 6, 703(2020)
CdS is widely used in photocatalytic research due to its unique photoelectrochemical properties. CdS recombination with narrow bandgap semiconductors and organic compounds plays an important role in photocatalyst exploration. In this study, a cucurbit[6]uril (Q[6]) composite and Ag2S-doped cadmium sulfide photocatalyst (Q[6]/CdS-Ag2S) were prepared by chemical precipitation method and their composite was characterized by different methods. The experiment is designed to use visible light as the light source and Rhodamine B as the simulated pollutant. Meanwhile, the effects of Q[6] on the photocatalytic performance of CdSAg2S were investigated. The results showed that the morphology of Q[6]/CdS-Ag2S composite after cucurbit[6]uril recombination was similar to cauliflower, while the particle size become smaller. Catalytic performance of the composite catalyst Q[6]/CdS-Ag2S was significantly higher than that of CdS-Ag2S, the photocatalytic reaction lasts 110 min, showing the catalytic degradation effciency of 92.4% using 15 mg composite catalyst on 100 mL, 6 mg/L Rhodamine B solution.
Get Citation
Copy Citation Text
Zhangmei PENG, Anting ZHAO, Maofen FU.
Category: RESEARCH PAPER
Received: Jul. 2, 2019
Accepted: --
Published Online: Mar. 2, 2021
The Author Email: ZHAO Anting (atzhao@sina.com)