Journal of Inorganic Materials, Volume. 39, Issue 2, 129(2023)

Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites

Hujie WAN1,2 and Xu XIAO1、*
Author Affiliations
  • 11. State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 22. School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
  • show less

    Developing novel low-dimensional materials for terahertz electromagnetic shielding and absorbing applications represents a critical research frontier. Their unique electrical, mechanical, and electromagnetic responses hold great potential in enabling more efficient solutions for electromagnetic shielding and absorbing. Two-dimensional transition metal carbides, nitrides, and carbonitride MXenes have already demonstrated excellent electromagnetic shielding and absorbing performance in the low-frequency spectrum. MXenes possess high conductivity, low density, and high flexibility, which are advantageous for future portability and integration of terahertz devices and systems. However, practical implementation of MXene-based terahertz electromagnetic shielding and absorption materials faces challenges in adhesion stability, environmental resilience, and high-temperature tolerance, hindering their suitability for aerospace and future next generation communication applications. Moreover, in terahertz frequency band, lacking more comprehensive and reliable electromagnetic scattering and absorbing measurement methods limits the development of THz shielding and absorbing materials. Extensive research efforts have targeted on these limitations, exploring fundamental architectural and theoretical aspects of prevalent electromagnetic materials. This review specifically highlights the terahertz electromagnetic shielding and absorption characteristics inherent in various MXenes and their compositions, such as Ti3C2Tx, Mo2Ti2C3Tx, Mo2TiC2Tx, Nb4C3Tx, and Nb2CTx. Additionally, this review envisages the forthcoming challenges and prospects of MXenes as a pivotal electromagnetic shielding and absorbing material within the terahertz frequency band.

    Tools

    Get Citation

    Copy Citation Text

    Hujie WAN, Xu XIAO. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites[J]. Journal of Inorganic Materials, 2023, 39(2): 129

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 5, 2023

    Accepted: --

    Published Online: Jul. 8, 2024

    The Author Email: XIAO Xu (xuxiao@uestc.edu.cn)

    DOI:10.15541/jim20230453

    Topics