Optics and Precision Engineering, Volume. 29, Issue 9, 2268(2021)
Asymmetrically clipped optical OFDM with generalized index modulation for atmospheric turbulent channel
Optical orthogonal frequency division multiplexing (OFDM) with index modulation has the advantage of high spectral efficiency (SE); however, the error performance is not optimal. In this paper, a scheme of asymmetrically clipped optical OFDM with generalized index modulation (ACO-OFDM-GIM) is proposed. In this scheme, the number of active subcarriers in each sub-block can be one or more, and these subcarriers extend the frequency domain modulation. Furthermore, a subcarrier allocation algorithm is adopted to eliminate the correlation between adjacent subcarriers. In this way, a better error performance may be achieved. Taking asymmetrically clipped O-OFDM-GIM (ACO-OFDM-GIM) as an example, the modulation mapping principle of O-OFDM-GIM has been introduced in detail. In addition, the asymptotic bit error probability of the ACO-OFDM-GIM scheme for the turbulence channel is derived and the correctness is verified via simulation. Furthermore, the performance of the ACO-OFDM-GIM system is compared with that of ACO-OFDM and ACO-OFDM-IM systems. The results showed that the transmission rate and the error performance of the ACO-OFDM-GIM scheme are improved compared with the ACO-OFDM-IM and ACO-OFDM schemes. When the SE is indifferent, the error performance of the proposed scheme is greater than ACO-OFDM and ACO-OFDM-IM systems at a large signal noise ratio (SNR). When the bit error rate is 1×10-4, the SNR of (4,[1,2]) ACO-OFDM-GIM scheme outperforms that of (4,2) ACO-OFDM-IM and ACO-OFDM schemes nearly 2.5 dB and 4.5 dB, under a strong turbulence channel, respectively. Therefore, the ACO-OFDM-GIM scheme is expected to effectively improve the transmission rate of atmospheric laser communication in the future.
Get Citation
Copy Citation Text
Hui-qin WANG, Hong-xia DOU, Ming-hua CAO, Yu-kun MA, Qing-bin PENG. Asymmetrically clipped optical OFDM with generalized index modulation for atmospheric turbulent channel[J]. Optics and Precision Engineering, 2021, 29(9): 2268
Category: Information Sciences
Received: Oct. 3, 2020
Accepted: --
Published Online: Nov. 22, 2021
The Author Email: WANG Hui-qin (Whq1222@lut.edu.cn)