Journal of Inorganic Materials, Volume. 39, Issue 6, 671(2024)

CMAS Corrosion Resistance of Y3Al5O12/Al2O3 Ceramic Coating Deposited by Atmospheric Plasma Spraying

Jie LI1...2, Zhixin LUO1, Yang CUI1, Guangheng ZHANG1,2, Luchao SUN1,* and Jingyang WANG1,* |Show fewer author(s)
Author Affiliations
  • 11. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
  • 22. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
  • show less

    The investigation of novel materials exhibiting exceptional resistance to calcium-magnesium-aluminum- silicate (CMAS) corrosion at temperatures of 1300 ℃ and above has emerged as a pivotal objective in the advancement of environmental barrier coatings for aircraft engines in recent years. In this study, atmospheric plasma spraying (APS) technology was employed to fabricate YAG(Y3Al5O12)/Al2O3 coatings with eutectic composition, which was acknowledged as a promising material possessing outstanding CMAS corrosion resistance, thereby rendering it suitable for application in environmental barrier coatings. The as-deposited coatings were annealed at 1100, 1300, and 1500 ℃ to obtain different microstructures, and the corrosion resistance as well as mechanism of YAG/Al2O3 coatings against CMAS were investigated by comparing the corrosion results after exposure to CMAS at 1300 ℃. The reaction products between YAG/Al2O3 coatings and CMAS were found to be garnet-structure solid solution, CaAl2Si2O8, and Ca2MgSi2O7. The nearly continuous distribution of the garnet-structure solid solution layer at the reaction interface between YAG/Al2O3 coating annealed at 1100 ℃ and CMAS effectively impedes the diffusion of CMAS corrosion elements. For YAG/Al2O3 coating annealed at 1500 ℃, the increase in grain size and decrease in grain boundaries reduce the dissolution rate of the coating. Both of the above can affect the competitive precipitation of various products by influencing the ion transport rate in the corrosion process, and then improve the CMAS corrosion resistance of the coating. Moreover, heat-treatment temperature can tailor grain size, which influences both dissolution-precipitation rate and competitive precipitation of reaction products during CMAS corrosion. These findings provide guidance for selecting appropriate heat-treatment temperature and offer a novel approach to optimize CMAS corrosion resistance of YAG/Al2O3 coatings through microstructure optimization.

    Keywords
    Tools

    Get Citation

    Copy Citation Text

    Jie LI, Zhixin LUO, Yang CUI, Guangheng ZHANG, Luchao SUN, Jingyang WANG. CMAS Corrosion Resistance of Y3Al5O12/Al2O3 Ceramic Coating Deposited by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2024, 39(6): 671

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 2, 2024

    Accepted: --

    Published Online: Jul. 31, 2024

    The Author Email: SUN Luchao (lcsun@imr.ac.cn), WANG Jingyang (jywang@imr.ac.cn)

    DOI:10.15541/jim20240001

    Topics