Infrared and Laser Engineering, Volume. 50, Issue 11, 20210484(2021)

Research on super-resolution fluorescence microscopy imaging based on multiple measurement vector compressed sensing

Saiwen Zhang1...2, Yaqi Deng1,2, Chong Wang1,2, Xiaoling Leng1,2, Guangfu Zhang1,2, Bing Wen1,2, Yangbao Deng1,2,*, Weishi Tan1,2, Ye Tian1,2, and Wenguo Li12 |Show fewer author(s)
Author Affiliations
  • 11. School of Information and Electronics Engineering, Hunan City University, Yiyang 413000, China
  • 2All-solid-state Energy Storage Materials and Devices Key Laboratory of Hunan Province, Hunan City University, Yiyang 413000, China
  • show less

    In the super-resolution microscopy imaging technology, single molecule localization microscopy is one of the widely used techniques. In this paper, in order to achieve super-resolution fluorescence image reconstruction, a multiple measurement vector Compressed sensing (MMV-CS) model was established based on the principle of fluorescence microscopic imaging, and the multiple sparse Bayesian learning algorithm was applied in problem solving. The effects of the effective pixel size, the number of photons generated by fluorescent molecules and the Poisson noise of fluorescence and background signal on the reconstruction results were analyzed. The running time of the algorithm was analyzed with the image subdivided into smaller patches. The results of simulation and experimental calculation show that when the standard deviation of the point spread function is 160 nm, the effective pixel size at 120 nm, 160 nm and 200 nm can achieve good reconstruction effect, while the pixel size at 60 nm results in poor effect. Better reconstruction image quality is achieved with more photons collected by the detector. As the background signal photons increase, the sample structure becomes indistinguishable when the distance is too close. Under the same subdivided condition, MMV-CS is one order of magnitude faster than the Homotopy (L1-H) algorithm and three orders of magnitude faster than the convex optimization algorithm (CVX), which has greater advantages in terms of running time for the application of MMV-CS in 3D super-resolution fluorescence microscopy.

    Tools

    Get Citation

    Copy Citation Text

    Saiwen Zhang, Yaqi Deng, Chong Wang, Xiaoling Leng, Guangfu Zhang, Bing Wen, Yangbao Deng, Weishi Tan, Ye Tian, Wenguo Li. Research on super-resolution fluorescence microscopy imaging based on multiple measurement vector compressed sensing[J]. Infrared and Laser Engineering, 2021, 50(11): 20210484

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image processing

    Received: Jul. 15, 2021

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email: Deng Yangbao (dyb5202008@aliyun.com)

    DOI:10.3788/IRLA20210484

    Topics