Infrared and Laser Engineering, Volume. 46, Issue 11, 1120003(2017)

Design and optimization of broadband convex blazed grating

Zhu Jiacheng1,2、*, Jin Yangming1,2, Huang Xujie1,2, Liu Quan1,2,3, and Shen Weimin1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less

    Convex blazed grating is one of the key elements in hyperspectral imaging spectrometers. Generally, the effective wavelength coverage of blazed grating is not broad enough to meet the need of imaging spectrometer for grating′s diffraction efficiency. To extend the observation band of imaging spectrometer, in which the convex blazed grating was designed and optimized. A case study of 0.4-2.5 μm band Offner type imaging spectrometer, single-order and dual-order dispersive structures of convex grating were researched. Partitioned blazed grating and dual-angle blazed grating were used to improve the diffraction efficiency in the range of a broadband. The groove shape of two types of dual-blazed gratings with different dispersive structures was optimally designed, and the diffraction efficiency was calculated by the method of scalar theory and finite element analysis. According to the signal-to-noise ratio(SNR) of the instrument, different types of grating were proposed to meet different requirements of imaging spectrometer.

    Tools

    Get Citation

    Copy Citation Text

    Zhu Jiacheng, Jin Yangming, Huang Xujie, Liu Quan, Shen Weimin. Design and optimization of broadband convex blazed grating[J]. Infrared and Laser Engineering, 2017, 46(11): 1120003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 光电器件与微系统

    Received: Mar. 21, 2017

    Accepted: Apr. 23, 2017

    Published Online: Dec. 26, 2017

    The Author Email: Jiacheng Zhu (20154208096@stu.suda.edu.cn)

    DOI:10.3788/irla201746.1120003

    Topics