[1] J.Nuckolls, A.Thiessen, L.Wood, G.Zimmerman. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature, 239, 139(1972).
[2] J.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933(1995).
[3] S.Atzeni, J.Meyer-ter-Vehn. The Physics of Inertial Fusion(2004).
[4] E. M.Campbell, W. J.Hogan. The National Ignition Facility—Applications for inertial fusion energy and high-energy-density science. Plasma Phys. Controlled Fusion, 41, B39(1999).
[5] J. D.Lindl, E. I.Moses. Special Topic: Plans for the National Ignition Campaign (NIC) on the National Ignition Facility (NIF): On the threshold of initiating ignition experiments. Phys. Plasmas, 18, 050901(2011).
[6] L. R.Bennedetti, L. F.Berzak Hopkins, S.Bhandarkar, J.Biener, T.Bunn, J.Crippen, E. L.Dewald, L.Divol, S.Le Pape, A.Paket?al.. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Phys. Rev. Lett., 120, 245003(2018).
[7] D.Clery. Laser-powered fusion effort nears, ‘ignition. Science, 373, 841(2021).
[8] H.Abu-Shawareb, R.Acree, J.Adams, P.Adams, B.Addis, R.Adenet?al.. Lawson criterion for ignition exceeded in an inertial fusion experiment. Phys. Rev. Lett., 129, 075001(2022).
[9] D. A.Callahan, D. T.Casey, O. A.Hurricane, A. L.Kritcher, J. E.Ralph, A. B.Zylstraet?al.. Experimental achievement and signatures of ignition at the National Ignition Facility. Phys. Rev. E, 106, 025202(2022).
[10] D. A.Callahan, D. S.Clark, O. A.Hurricane, A. L.Kritcher, C. R.Weber, A. B.Zylstraet?al.. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition. Phys. Rev. E, 106, 025201(2022).
[11] D. A.Callahan, L.Divol, P.Michel, C. A.Thomas, S.Weber, E. A.Williamset?al.. Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett., 102, 025004(2009).
[12] D. K.Bradley, O. S.Jones, A.Kritcher, J. R.Rygg, R.Tommasini, R. P. J.Townet?al.. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility. Phys. Plasmas, 21, 056313(2014).
[13] D.Bradley, D.Clark, O.Jones, A. L.Kritcher, B.Spears, R.Townet?al.. Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility. Phys. Plasmas, 21, 042708(2014).
[14] L. F.Berzak Hopkins, E. L.Dewald, L.Divol, N. B.Meezan, A.Pak, S. L.Papeet?al.. Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity. Phys. Plasmas, 24, 056309(2017).
[15] K. L.Baker, L. R.Benedetti, D. A.Callahan, O. A.Hurricane, J. E.Ralph, C. A.Thomaset?al.. Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility laser. Phys. Plasmas, 25, 056305(2018).
[16] D. A.Callahan, D. T.Casey, D.Clark, D. E.Hinkel, O. A.Hurricane, A. L.Kritcheret?al.. Integrated modeling of cryogenic layered highfoot experiments at the NIF. Phys. Plasmas, 23, 052709(2016).
[17] C. J.Cerjan, O. S.Jones, M. M.Marinak, J. L.Milovich, H. F.Robey, P. T.Springeret?al.. A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments. Phys. Plasmas, 19, 056315(2012).
[18] D. A.Callahan, S. H.Glenzer, D. E.Hinkel, J. L.Kline, N. B.Meezan, J. D.Moodyet?al.. Hohlraum energetics scaling to 520 TW on the National Ignition Facility. Phys. Plasmas, 20, 056314(2013).
[19] D. A.Callahan, O. A.Hurricane, A. L.Kritcher, J. E.Ralph, H. F.Robey, A. B.Zylstraet?al.. Burning plasma achieved in inertial fusion. Nature, 601, 542(2022).
[20] C. E.Czajka, S. F.Khan, G. A.Kyrala, T.Ma, S. A.MacLaren, L. P.Masseet?al.. A near one-dimensional indirectly driven implosion at convergence ratio 30. Phys. Plasmas, 25, 056311(2018).
[21] W.Huo, K.Lan, J.Liu, G.Ren. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model. Matter Radiat. Extremes, 2, 22(2017).
[22] J.Edwards, O.Landen, J.Lindl, E.Moses. Review of the National Ignition Campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).
[23] 2015 review of the inertial confinement fusion and high energy density science portfolio: Volume I(2016).
[24] Lawrence Livermore National Laboratory. Lasers indirect drive input to NNSA 2020 report.
[25] J.-L.Miquel, E.Prene. LMJ & PETAL status and program overview. Nucl. Fusion, 59, 032005(2019).
[26] D.Hu, F.Jing, X.Wei, X.Yuan, W.Zheng, Q.Zhuet?al.. Laser performance upgrade for precise ICF experiment in SG-III laser facility. Matter Radiat. Extremes, 2, 243(2017).
[27] X.-T.He, D.Lai, K.Lan, J.Liu, W.Zheng. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at a golden hohlraum-to-capsule radius ratio(2013).
[28] X.-T.He, D.Lai, K.Lan, J.Liu, W.Zheng. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at a golden hohlraum to-capsule radius ratio. Phys. Plasmas, 21, 010704(2014).
[29] X.-T.He, D.Lai, K.Lan, J.Liu, W.Zheng. Octahedral spherical hohlraum and its laser arrangement for inertial fusion. Phys. Plasmas, 21, 052704(2014).
[30] K.Lan, W.Zheng. Novel spherical hohlraum with cylindrical laser entrance holes and shields. Phys. Plasmas, 21, 090704(2014).
[31] K.Lan, S.Li, J.Liu. Study on size of laser entrance hole shield for ignition octahedral spherical hohlraums. Laser Part. Beams, 33, 731(2015).
[32] W.Huo, K.Lan, Z.Li, J.Liu, G.Ren, D.Yanget?al.. First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole. Matter Radiat. Extremes, 1, 2(2016).
[33] W. Y.Huo, K.Lan, S.Li, Z.Li, J.Liu, G.Ren, D.Yanget?al.. Comparison of the laser spot movement inside cylindrical and spherical hohlraums. Phys. Plasmas, 24, 072711(2017).
[34] Y. H.Chen, W. Y.Huo, K.Lan, Z.Li, J.Liu, X.Xieet?al.. First investigation on the radiation field of the spherical hohlraum. Phys. Rev. Lett., 117, 025002(2016).
[35] Y.Huang, L.Jing, S.Li, Z.Li, X.Xie, D.Yanget?al.. Radiation flux study of spherical hohlraums at the SGIII prototype facility. Phys. Plasmas, 23, 112701(2016).
[36] H.Cao, Y.-H.Chen, W. Y.Huo, Z.Li, G.Ren, X.Xieet?al.. First octahedral spherical hohlraum energetics experiment at the SGIII laser facility. Phys. Rev. Lett., 120, 165001(2018).
[37] Y. H.Chen, K.Lan, Z.Li, X.Xie, C.Zhai, C.Zhenget?al.. Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target. Phys. Rev. E, 95, 031202(2017).
[38] Y.Chen, L.Hao, Z.Li, X.Xie, C.Zhai, C.Zhenget?al.. First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility. Matter Radiat. Extremes, 2, 77(2017).
[39] H.Cao, Y.Chen, Y.Dong, K.Lan, Z.Li, J.Wuet?al.. First inertial confinement fusion implosion experiment in octahedral spherical hohlraum. Phys. Rev. Lett., 127, 245001(2021).
[40] Y.Ding, Y.Huang, S.Jiang, L.Jing. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion. Phys. Plasmas, 21, 102710(2014).
[41] H.Duan, W.Pei, C.Wu, S.Zou. Theoretical study of symmetry of flux onto a capsule. Phys. Plasmas, 22, 092704(2015).
[42] L.Ren, D.Zhao, J.Zhu. Beam guiding system geometric arrangement in the target area of high-power laser drivers. High Power Laser Sci. Eng., 3, e12(2015).
[43] Y.Ding, T.Huang, Y.Huang, S.Jiang, L.Jing, H.Li. A unified free-form representation applied to the shape optimization of the hohlraum with octahedral 6 laser entrance holes. Phys. Plasmas, 23, 012702(2016).
[44] H.Duan, W.Pei, C.Wu, S.Zou. Instability analysis of pointing accuracy and power imbalance of spherical hohlraum. Phys. Plasmas, 23, 052703(2016).
[45] Y.Ding, T.Huang, Y.Huang, S.Jiang, L.Jing, H.Li. A spherical hohlraum design with tetrahedral 4 laser entrance holes and high radiation performance. Phys. Plasmas, 23, 122703(2016).
[46] Y.Ding, S.Jiang, L.Jing, L.Kuang, H.Li, L.Li, Z.Lin, J.Liu, L.Zhang, J.Zheng. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition. Sci. Rep., 6, 34636(2016).
[47] Z.-S.Dai, J.-F.Gu, P.-J.Gu, X.Li, J.Liu, C.-S.Wu, W.-D.Zheng, S.-P.Zhu, S.-Y.Zou. A new ignition hohlraum design for indirect-drive inertial confinement fusion. Chin. Phys. B, 25, 085202(2016).
[48] S.Jiang, L.Jing, L.Kuang, L.Li, Z.Lin, L.Zhanget?al.. Preliminary study on a tetrahedral hohlraum with four half-cylindrical cavities for indirectly driven inertial confinement fusion. Nucl. Fusion, 57, 046020(2017).
[49] A.Casner, P.Gauthier, P. E.Masson-Laborde, M. C.Monteil, F.Philippe, V.Tassinet?al.. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums. Phys. Plasmas, 23, 022703(2016).
[50] P. A.Amendt, W. A.Farmer, J. H.Hammer, D. E.Hinkel, M.Tabak. High-temperature hohlraum designs with multiple laser-entrance holes. Phys. Plasmas, 26, 032701(2019).
[52] S.Craxton. A new beam configuration to support both spherical hohlraums and symmetric direct drive.
[53] R. S.Craxton, W. Y.Wang. Pentagonal prism spherical hohlraums for OMEGA. Phys. Plasmas, 28, 062703(2021).
[54] R. S.Craxton, W. Y.Wang. A proposal for pentagonal prism spherical hohlraum experiments on OMEGA. LLE Review, 166(2021).
[55] Y.Dong, W.Jiang, D.Kang, L.Kuang, X.Li, H.Shenet?al.. First indirect drive experiment using a six-cylinder-port hohlraum. Phys. Rev. Lett., 128, 195001(2022).
[56] Y.Chen, W.Huo, K.Lan, Z.Li, J.Liu, X.Xieet?al.. Progress in octahedral spherical hohlraum study. Matter Radiat. Extremes, 1, 8(2016).
[57] P.Amendt, R. L.Berger, S. G.Glendinning, S. H.Glenzer, S. W.Haan, R. L.Kauffman, O. L.Landen, J. D.Lindl, L. J.Suter. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339(2004).
[58] W. Y.Huo, K.Lan, J.Liu, Y.Zhao, W.Zheng. Insensitivity of the octahedral spherical hohlraum to power imbalance, pointing accuracy, and assemblage accuracy. Phys. Plasmas, 21, 114503(2014).
[59] P. A.Amendt, K. L.Baker, D.Bradley, D. A.Callahan, D. E.Hinkel, J. D.Moodyet?al.. Progress in hohlraum physics for the National Ignition Facility. Phys. Plasmas, 21, 056317(2014).
[60] D. H.Froula, A. V.Maximov, J. F.Myatt, W.Seka, R. W.Short, J.Zhanget?al.. Multiple-beam laser–plasma interactions in inertial confinement fusion. Phys. Plasmas, 21, 055501(2014).
[61] D. S.Bailey, L.Divol, G. D.Kerbel, P.Michel, J. D.Moody, J. E.Ralph, M. B.Schneider, S. M.Sepke, D. J.Strozzi, C. A.Thomas. Interplay of laser-plasma interactions and inertial fusion hydrodynamics. Phys. Rev. Lett., 118, 025002(2017).
[62] R.Betti, E. M.Campbell, V. N.Goncharov, P. B.Radha, S. P.Regan, T. C.Sangsteret?al.. Laser-direct-drive program: Promise, challenge, and path forward. Matter Radiat. Extremes, 2, 37(2017).
[63] Z. F.Fan, X. T.He, K.Lan, J. W.Li, J.Liu, L. F.Wang, J. F.Wu, W. H.Ye. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion. Phys. Plasmas, 23, 082706(2016).
[64] Y. H.Chen, W. Y.Huo, K.Lan, J.Liu, G.Ren, J.Yanet?al.. Neutron generation by laser-driven spherically convergent plasma fusion. Phys. Rev. Lett., 118, 165001(2017).
[65] X.Ai, Q.Chen, Z.He, Y.Huang, M.Liu, Y.Liu, Q.Yin, S.Zhang. Fabrication of solid CH-CD multilayer microspheres for inertial confinement fusion. Matter Radiat. Extremes, 6, 025901(2021).
[66] J. P.Boris, M. H.Emery, J. H.Gardner, J. H.Orens. Influence of nonuniform laser intensities on ablatively accelerated targets. Phys. Rev. Lett., 48, 253(1982).
[67] K.Lee, S.Skupsky. Uniformity of energy deposition for laser driven fusion. J. Appl. Phys., 54, 3662(1983).
[68] S.Kawata, K.Niu. Effect of nonuniform implosion of target on fusion parameters. J. Phys. Soc. Jpn., 53, 3416(1984).
[69] R.Betti, T. R.Boehly, V. N.Goncharov, O. V.Gotchev, J. P.Knauer, P.McKenty, D. D.Meyerhofer, S.Skupsky, V. A.Smalyuk, R. P. J.Town. A model of laser imprinting. Phys. Plasmas, 7, 2062(2000).
[70] C. B.Darrow, R. L.Kauffman, J. D.Kilkenny, H. N.Kornblum, D. S.Montgomery, L. J.Suteret?al.. High temperatures in inertial confinement fusion radiation cavities heated with 0.35 μm light. Phys. Rev. Lett., 73, 2320(1994).
[71] D. T.Casey, D. S.Clark, B. A.Hammel, J. L.Milovich, A. E.Pak, C. R.Weberet?al.. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions. Phys. Plasmas, 26, 050601(2019).
[72] J. H.Hammer, S. A.MacLaren, J. D.Moody, M. B.Schneider, K.Widmann, B. E.Yoxallet?al.. Novel characterization of capsule X-ray drive at the National Ignition Facility. Phys. Rev. Lett., 112, 105003(2014).
[73] W. Y.Huo, K.Lan, S.Li, X.Li, Y.Li, D.Yanget?al.. Determination of the hohlraum M-band fraction by a shock-wave technique on the SGIII-prototype laser facility. Phys. Rev. Lett., 109, 145004(2012).
[74] A.Caruso, C.Strangio. The quality of the illumination for a spherical capsule enclosed in a radiating cavity. Jpn. J. Appl. Phys., 30, 1095(1991).
[75] H.Cao, Y.-H.Chen, K.Lan, C.Zhai, C.Zheng. Design of octahedral spherical hohlraum for CH Rev5 ignition capsule. Phys. Plasmas, 24, 082701(2017).
[76] H.Cao, Y.Chen, S.Li, Z.Li, K.Pan, X.Xieet?al.. Demonstration of the feasibility of octahedral spherical hohlraum for inertial confinement fusion.
[77] L. F.Berzak Hopkins, L.Divol, D. D.Ho, S.Le Pape, A. J.Mackinnon, N. B.Meezanet?al.. First high-convergence cryogenic implosion in a near-vacuum hohlraum. Phys. Rev. Lett., 114, 175001(2015).
[78] D. A.Callahan, O. A.Hurricane, A. L.Kritcher, J.Ralph, C.Weber, A. B.Zylstraet?al.. Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. Phys. Plasmas, 28, 072706(2021).
[79] O. A.Hurricane, A. L.Kritcher, H. F.Robey, C. R.Weber, C. V.Young, A. B.Zylstraet?al.. Design of inertial fusion implosions reaching the burning plasma regime. Nat. Phys, 18, 251-258(2022).
[80] D. A.Callahan, D. S.Clark, S. W.Haan, B. A.Hammel, J. D.Lindl, J. D.Salmonsonet?al.. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas, 18, 051001(2011).
[81] J. H.Hammer, S. A.MacLaren, N. B.Meezan, M. B.Schneider, K.Widmann, B. E.Yoxallet?al.. The size and structure of the entrance hole in gas-filled hohlraums at the National Ignition Facility. Phys. Plasmas, 22, 122705(2015).
[82] D. A.Callahan, D. E.Hinkel, A. B.Langdon, S. H.Langer, C. H.Still, E. A.Williams. Analyses of laser-plasma interactions in National Ignition Facility ignition targets. Phys. Plasmas, 15, 056314(2008).
[83] P.Gu, X.-T.He, W.Huo, D.Lai, K.Lan, X.Li, G.Ren, C.Wu. An initial design of hohlraum driven by a shaped laser pulse. Laser Part. Beams, 28, 421(2010).
[84] D.Lai, K.Lan, X.Li, Y.Zhao. Initial study and design on ignition ellipraum. Laser Part. Beams, 30, 175(2012).
[85] D. W.Phillion, S. M.Pollaine. Dynamical compensation of irradiation nonuniformities in a spherical hohlraum illuminated with tetrahedral symmetry by laser beams. Phys. Plasmas, 1, 2963(1994).
[86] N. D.Delamater, P.Gobby, A. A.Hauer, K. A.Klare, E. L.Lindman, G. R.Magelssen, T. J.Murphy, J. A.Oertel, J. M.Wallace. Inertial confinement fusion with tetrahedral hohlraums at OMEGA. Phys. Rev. Lett., 82, 3807(1999).
[87] Y.-H.Chen, K.Lan, Y.Li, J.Liu, G.Ren, C.Zhai. Octahedral spherical Hohlraum for Rev. 6 NIF beryllium capsule. Phys. Plasmas, 25, 102701(2018).
[88] K.Lan, X.Qiao. Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion. Phys. Rev. Lett., 126, 185001(2021).
[89] Y.Ding, S.Jiang, S.Li, S.Liu, F.Wang, J.Yanget?al.. Recent diagnostic developments at the 100 kJ-level laser facility in China. Matter Radiat. Extremes, 5, 035201(2020).
[90] Q.Wanget?al.. Development of a gated X-ray imager with multiple views and spectral selectivity for observing plasmas evolution in hohlraums. Rev. Sci. Instrum., 90, 073301(2019).
[91] H.Du, L.Hou, W.Huo, S.Liu, G.Ren, K.Renet?al.. Direct measurement of x-ray flux for a pre-specified highly-resolved region in hohlraum. Opt. Express, 23, A1072(2015).
[92] F.Chen, X.Li, T.Xiaoet?al.. A novel superconducting magnetic levitation method to support the laser fusion capsule by using permanent magnets. Matter Radiat. Extremes, 3, 104(2018).
[93] P. A.Bradley, R. E.Chrien, N. M.Hoffman, D. P.Smitherman, F. J.Swenson, D. C.Wilsonet?al.. The development and advantages of beryllium capsules for the National Ignition Facility. Phys. Plasmas, 5, 1953(1998).
[94] O. L.Landen, R. J.Leeper, R. E.Olson, G. A.Rochau. X-ray ablation rates in inertial confinement fusion capsule materials. Phys. Plasmas, 18, 032706(2011).
[95] S. H.Batha, E. L.Dewald, J. L.Kline, G. A.Kyrala, R. E.Olson, T. S.Perry, A. N.Simakov, D. C.Wilson, S. A.Yi, A. B.Zylstraet?al.. First beryllium capsule implosions on the National Ignition Facility. Phys. Plasmas, 23, 056310(2016).
[96] J. D.Hager, J. L.Kline. Aluminum X-ray mass-ablation rate measurements. Matter Radiat. Extremes, 2, 16(2017).
[97] Z.Fan, K.Lan, B.Liu, J.Liu, Y.Liu, C.Yu. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments. Matter Radiat. Extremes, 2, 3(2017).
[98] T.Feng, X.He, D.Lai, K.Lan, X.Li, X.Meng. Study on Au + U + Au sandwich Hohlraum wall for ignition targets. Laser Part. Beams, 28, 75(2010).
[99] Y.Ding, L.Guo, L.Jing, L.Kuang, S.Li, Z.Li, G.Ren, Z.Wu, P.Xing, T.Yiet?al.. Uranium hohlraum with an ultrathin uranium–nitride coating layer for low hard x-ray emission and high radiation temperature. New J. Phys., 17, 113004(2015).
[100] J. H.Hammer, M. D.Rosen. Analytic expressions for optimal interial-confinement fusion hohlraum wall density and wall loss. Phys. Rev. E, 72, 056403(2005).
[101] K.Lan, P.Song. Foam Au driven by 4ω–2ω ignition laser pulse for inertial confinement fusion. Phys. Plasmas, 24, 052707(2017).
[102] E. M.Campbell, Y.-H.Chen, K.Lan, W.Zheng. High coupling efficiency of foam spherical hohlraum driven by 2ω laser light. Phys. Plasmas, 25, 022702(2018).
[103] J.-L. A.Feugeas, P. D.Nicola?, G. P.Schurtz. A practical non-local model for heat transport in magnetized laser plasmas. Phys. Plasmas, 13, 032701(2006).
[104] P. J.Gu, W. Y.Huo, K.Lan, H.Yong, Q. H.Zeng. Electron heat conduction under non-Maxwellian distribution in hohlraum simulation. Phys. Plasmas, 19, 012313(2012).
[105] K.Lan, X.Qiao, B.Qing, P.Song, J.Zhang, W.Zheng. Study on laser-irradiated Au plasmas by detailed configuration accounting atomic physics. Phys. Plasmas, 24, 102706(2017).
[106] M.Holec, M.Kucha?ík, J.Limpouch, J.Nikl, S.Weber, M.Zeman. Macroscopic laser-plasma interaction under strong non-local transport conditions for coupled matter and radiation. Matter Radiat. Extremes, 3, 110(2018).
[107] K.Lan, K.Li. Escape of α-particle from hot-spot for inertial confinement fusion. Phys. Plasmas, 26, 122701(2019).
[108] W. Y.Huo, K.Li. Nonlocal electron heat transport under the non-Maxwellian distribution function. Phys. Plasmas, 27, 062705(2020).
[109] H.Aluie, R.Betti, F.García-Rubio, J.Sanz. Self-consistent theory of the Darrieus–Landau and Rayleigh–Taylor instabilities with self-generated magnetic fields. Phys. Plasmas, 27, 112715(2020).
[110] A. L.Kritcher, M. E.Martin, J.Nilsen, D. C.Swift, R. E.Tipton, H. D.Whitleyet?al.. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum. Matter Radiat. Extremes, 5, 018401(2020).
[111] Y.Cui, W.Feng, Y.Gao, L.Ji, F.Li, D.Liu, J.Liu, D.Rao, L.Xia, X.Zhaoet?al.. Development of low-coherence high-power laser drivers for inertial confinement fusion. Matter Radiat. Extremes, 5, 065201(2020).
[112] R. K.Follett, D. H.Froula, J. F.Myatt, J. P.Palastro, J. G.Shaw, H.Wen. Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers. Phys. Plasmas, 28, 032103(2021).
[113] P.Gibbon, S.Kawata, X. F.Li, H. H.Ma, Z. M.Sheng, S. M.Weng, S. H.Yew, J.Zhang. Mitigating parametric instabilities in plasmas by sun-light lasers. Matter Radiat. Extremes, 6, 055902(2021).