[1] J. M.Dawson, T.Tajima. Laser electron accelerator. Phys. Rev. Lett., 43, 267-270(1979).
[2] J. L.Collier, A. E.Dangor, E. J.Divall, P. S.Foster, J. G.Gallacher, C. J.Hooker, S. P. D.Mangles, C. D.Murphy, Z.Najmudin, A. G. R.Thomaset?al.. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature, 431, 535-538(2004).
[3] F.Burgy, J.Faure, Y.Glinec, S.Gordienko, S.Kiselev, E.Lefebvre, V.Malka, A.Pukhov, J.-P.Rousseau. A laser–plasma accelerator producing monoenergetic electron beams. Nature, 431, 541-544(2004).
[4] D.Bruhwiler, J.Cary, E.Esarey, C. G. R.Geddes, W. P.Leemans, C.Nieter, C. B.Schroeder, C.Toth, J.Van Tilborg. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature, 431, 538-541(2004).
[5] J.Chen, Y.Gu, Y.He, J.Hua, D.Liu, W.Lu, Y.Ma, X.Ning, C.-H.Pai, F.Yang, Z.Yang, J.Zhang, T.Zhang. Region-of-interest micro-focus computed tomography based on an all-optical inverse Compton scattering source. Matter Radiat. Extremes, 5, 064401(2020).
[6] Y.Chen, M.Fang, K.Feng, K.Jiang, L.Ke, Y.Leng, R.Li, J.Liu, J.Liu, R.Qi, Z.Qin, C.Wang, H.Wang, W.Wang, F.Wu, Y.Xu, Z.Xu, X.Yang, C.Yu, Z.Zhang. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature, 595, 516-520(2021).
[7] M.Chen, W.-Y.Liu, Z.-M.Sheng, S.-M.Weng, J.Zhang, X.-L.Zhu. Generation of single-cycle relativistic infrared pulses at wavelengths above 20 μm from density-tailored plasmas. Matter Radiat. Extremes, 7, 014403(2022).
[8] C.Benedetti, S. S.Bulanov, J.Daniels, E.Esarey, C. G. R.Geddes, A. J.Gonsalves, W. P.Leemans, H.-S.Mao, D. E.Mittelberger, K.Nakamura, C. B.Schroeder, C.Tóth, J.-L.Vay. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett., 113, 245002(2014).
[9] G.Bagdasarov, C.Benedetti, J. H.Bin, N.Bobrova, S. S.Bulanov, J.Daniels, T. C. H.de Raadt, E.Esarey, L.Fan-Chiang, V.Gasilov, C. G. R.Geddes, A. J.Gonsalves, G.Korn, W. P.Leemans, K.Nakamura, C.Pieronek, P.Sasorov, C. B.Schroeder, S.Steinke, K.Swanson, C.Tóth, J.van Tilborg. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett., 122, 084801(2019).
[10] I.Andriyash, A.D?pp, J. P.Goddet, E.Guillaume, A.Lifschitz, V.Malka, F.Massimo, K.Ta Phuoc, A.Tazfi, C.Thaury. Energy-chirp compensation in a laser wakefield accelerator. Phys. Rev. Lett., 121, 074802(2018).
[11] M.Fang, Y. X.Leng, R. X.Li, W. T.Li, J. Q.Liu, J. S.Liu, R.Qi, Z. Y.Qin, C.Wang, W. T.Wang, F. X.Wu, Y.Xu, Z. Z.Xu, C. H.Yu, Z. J.Zhang. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control. Phys. Rev. Lett., 117, 124801(2016).
[12] Y.Chen, K.Feng, L. T.Ke, Y. X.Leng, R. X.Li, J. S.Liu, R.Qi, Z. Y.Qin, W. T.Wang, Y.Wu, Y.Xu, Z. Z.Xu, X. J.Yang, C. H.Yu, Z. J.Zhang. Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma. Phys. Rev. Lett., 126, 214801(2021).
[13] E.Esarey, C. G. R.Geddes, A. J.Gonsalves, S. M.Hooker, W. P.Leemans, B.Nagler, K.Nakamura, C. B.Schroeder, C.Toth. GeV electron beams from a centimetre-scale accelerator. Nat. Phys., 2, 696(2006).
[14] C.Joshi, W.Lu, K. A.Marsh, S. F.Martins, W. B.Mori, A.Pak. Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett., 104, 025003(2010).
[15] R. A.Fonseca, S. F.Martins, W. B.Mori, V. B.Pathak, L. O.Silva, J.Vieira. Magnetic control of particle injection in plasma based accelerators. Phys. Rev. Lett., 106, 225001(2011).
[16] A.Buck, M.Geissler, M.Heigoldt, S.Karsch, K.Khrennikov, F.Krausz, J. M.Mikhailova, K.Schmid, B.Shen, L.Veisz, J.Wenz, J.Xu. Shock-front injector for high-quality laser-plasma acceleration. Phys. Rev. Lett., 110, 185006(2013).
[17] E.Dodd, J. K.Kim, D.Umstadter. Laser injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett., 76, 2073-2076(1996).
[18] E.Esarey, R. F.Hubbard, W. P.Leemans, P.Sprangle, A.Ting. Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett., 79, 2682-2685(1997).
[19] M.Chen, P.Norreys, Z. M.Sheng, R.Trines, W. M.Wang, J.Zhang. Mechanisms of electron injection into laser wakefields by a weak counter-propagating pulse. Eur. Phys. J.: Spec. Top., 175, 49-55(2009).
[20] J.Faure, Y.Glinec, A.Lifschitz, V.Malka, A.Norlin, C.Rechatin. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature, 444, 737-739(2006).
[21] A. E.Dangor, P.Foster, J. G.Gallacher, D. A.Jaroszynski, C.Kamperidis, K.Krushelnick, K. L.Lancaster, S. P. D.Mangles, C. D.Murphy, Z.Najmudin, P. A.Norreys, A. G. R.Thomas, R.Viskup. Monoenergetic electronic beam production using dual collinear laser pulses. Phys. Rev. Lett., 100, 255002(2008).
[22] S. V.Bulanov, L.-M.Chen, H.Daido, I.Daito, T. Z.Esirkepov, A.Faenov, Y.Fukuda, Y.Hayashi, T.Homma, T.Kameshima, S.Kanazawa, M.Kando, K.Kawase, H.Kiriyama, J. K.Koga, S.Kondo, H.Kotaki, J.Ma, H.Matsuura, Y.Nakai, H.Okada, T.Pikuz, A. S.Pirozhkov, H.Sasao, T.Shimomura, A.Sugiyama, M.Tanoue, D.Wakai. Electron optical injection with head-on and countercrossing colliding laser pulses. Phys. Rev. Lett., 103, 194803(2009).
[23] A.Ben-Ismail, F.Burgy, J.Faure, R.Fitour, J.Lim, V.Malka, C.Rechatin, A.Specka, A.Tafzi, H.Videau. Controlling the phase-space volume of injected electrons in a laser-plasma accelerator. Phys. Rev. Lett., 102, 164801(2009).
[24] S.Banerjee, M.Chen, S.Chen, C.Fruhling, G.Golovin, D.Haden, C.Liu, J.Luo, D.Umstadter, W.Yan, P.Zhang, B.Zhao. Electron trapping from interactions between laser-driven relativistic plasma waves. Phys. Rev. Lett., 121, 104801(2018).
[25] Q.Chen, V.Horny, S. X.Lee, D.Maslarova, D.Umstadter, J.Wang. Transient relativistic plasma grating to tailor high-power laser fields, wakefield plasma waves, and electron injection. Phys. Rev. Lett., 128, 164801(2022).
[26] X.Davoine, J.Faure, E.Lefebvre, V.Malka, C.Rechatin. Cold optical injection producing monoenergetic, multi-GeV electron bunches. Phys. Rev. Lett., 102, 065001(2009).
[27] X.Davoine, R.Lehe, A. F.Lifschitz, V.Malka, C.Thaury. Optical transverse injection in laser-plasma acceleration. Phys. Rev. Lett., 111, 085005(2013).
[28] C.-e.Chen, R.Hu, C.Lin, H.Lu, Y.Shou, X.Yan, H.Zhuo. Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator. Phys. Rev. Accel. Beams, 19, 091301(2016).
[29] A. M.de la Ossa, J.Osterhoff, M.Zeng. Ponderomotively assisted ionization injection in plasma wakefield accelerators. New J. Phys., 22, 123003(2020).
[30] J.Gao, D.Li, J.Wang, X.Wang, M.Zeng. Scissor-cross ionization injection in laser wakefield accelerators. Plasma Phys. Controlled Fusion, 64, 045012(2022).
[31] D. L.Bruhwiler, A.Deng, B.Hidding, D. A.Jaroszynski, O.Karger, A.Knetsch, G. G.Manahan, J. B.Rosenzweig, Z.-M.Sheng, J.Smith, G.Wittig, Y.Xi. Optical plasma torch electron bunch generation in plasma wakefield accelerators. Phys. Rev. Spec. Top.–Accel. Beams, 18, 081304(2015).
[32] C.Benedetti, M.Chen, E.Esarey, C. G. R.Geddes, W. P.Leemans, C. B.Schroeder, J.-L.Vay, L.-L.Yu. Two-color laser-ionization injection. Phys. Rev. Lett., 112, 125001(2014).
[33] D. L.Bruhwiler, B.Hidding, T.K?nigstein, G.Pretzler, J. B.Rosenzweig, D.Schiller. Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout. Phys. Rev. Lett., 108, 035001(2012).
[34] N.Bourgeois, J.Cowley, S. M.Hooker. Two-pulse ionization injection into quasilinear laser wakefields. Phys. Rev. Lett., 111, 155004(2013).
[35] V.Horny, M.Krus, D.Maslarova, J.Psikal. Laser wakefield accelerator driven by the super-Gaussian laser beam in the focus. Plasma Phys. Controlled Fusion, 62, 024005(2020).
[36] T. M. Antonsen, P.Mora. Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas. Phys. Plasmas, 4, 217-229(1997).
[37] Z.Hu, O.Kononenko, A.Martinez de la Ossa, T. J.Mehrling, J.Osterhoff, B.Sheeran, M. J. V.Streeter. Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators. Phys. Rev. Accel. Beams, 20, 091301(2017).
[38] W.An, T. N.Dalichaouch, C.Joshi, F.Li, W.Lu, W. B.Mori, X. L.Xu, P.Yu. High quality electron bunch generation using a longitudinal density-tailored plasma-based accelerator in the three-dimensional blowout regime. Phys. Rev. Accel. Beams, 20, 111303(2017).
[39] I. A.Andriyash, B. B.Godfrey, M.Kirchen, R.Lehe, J.-L.Vay. A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm. Comput. Phys. Commun., 203, 66-82(2016).
[40] A.Almgren, L. D.Amorim, J.Bell, L.Fedeli, L.Ge, K.Gott, D. P.Grote, M.Hogan, A.Huebl, R.Jambunathan, R.Lehe, A.Myers, C.Ng, M.Rowan, O.Shapoval, M.Thévenet, J.-L.Vay, H.Vincenti, E.Yang, N.Za?m, W.Zhang, Y.Zhao, E.Zoni. Modeling of a chain of three plasma accelerator stages with the WarpX electromagnetic PIC code on GPUs. Phys. Plasmas, 28, 023105(2021).
[41] R. A.Fonseca, C.Joshi, W.Lu, W. B.Mori, L. O.Silva, F. S.Tsung, M.Tzoufras, J.Vieira. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top.–Accel. Beams, 10, 061301(2007).
[42] M.Chen, W. B.Mori, Z.-M.Sheng, M.Zeng, J.Zhang. Self-truncated ionization injection and consequent monoenergetic electron bunches in laser wakefield acceleration. Phys. Plasmas, 21, 030701(2014).