Journal of Advanced Dielectrics, Volume. 15, Issue 2, 2450020(2025)

Efficient exploration of electronic and dielectric properties using advanced first-principles analysis grounded in modern theory of polarization: Application to PbTiO3

Aimad Belboukhari*, Souad Ait Saghir, Abderrahim Bakak, Said El-Jallal, Khaled Ait Bentaleb, My Abdelaziz Koumina, Daoud Mezzane, and Yaovi Gagou

Electronic and dielectric properties are essential for understanding many functional materials, predicting their behavior and optimizing their performance across different shapes, geometries and scales. Several approaches were developed and explored to investigate more or less deeply the appropriate properties. One of the most appealing, accurate and efficient approach is first principle simulations based on modern theory of polarization. Especially with the increased availability of powerful computational resources and techniques. Building upon these advancements, our contribution aims to elucidate an efficient methodology for studying electronic and dielectric properties by applying the Berry phase and Maximally Localized Wannier functions methods. Our exploration will initially focus on a systematic study of the electronic, chemical bonding, ferroelectric and piezoelectric properties of the well-known prototypical bulk system PbTiO3. Subsequently, we will extend our study to examine slab properties as surface termination and slab thickness effect on electronic properties, utilizing the robust Wannier-justified Tight Binding model.

Keywords
Tools

Get Citation

Copy Citation Text

Aimad Belboukhari, Souad Ait Saghir, Abderrahim Bakak, Said El-Jallal, Khaled Ait Bentaleb, My Abdelaziz Koumina, Daoud Mezzane, Yaovi Gagou. Efficient exploration of electronic and dielectric properties using advanced first-principles analysis grounded in modern theory of polarization: Application to PbTiO3[J]. Journal of Advanced Dielectrics, 2025, 15(2): 2450020

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Research Articles

Received: Mar. 25, 2024

Accepted: Jul. 1, 2024

Published Online: Feb. 18, 2025

The Author Email: Belboukhari Aimad (a.belboukhari@uca.ac.ma)

DOI:10.1142/S2010135X24500206

Topics