Journal of Inorganic Materials, Volume. 37, Issue 9, 1016(2022)
Lithium-ion batteries (LIBs) are widely applied to various portable electronic devices and new energy vehicles. However, the traditional graphite anode with low theoretical capacity (372 mAh/g) is unable to meet the need of the rapid development of economy and society. Herein, a zinc-based metallic organic framework (ZIF-8) derived three-dimensional network carbon coated silicon (Si@NC) composite was designed for lithium-ion battery. Firstly, the surface of nano-silicon was chemical modified; secondly, small size ZIF-8 was in situ grown on the silicon surface to form Si@ZIF-8; finally, the three-dimensional network Si@NC composite was obtained by carbonization. Results show that the three-dimensional network porous structure of the Si@NC composite not only limits the volume expansion of silicon, but greatly improves the conductivity of the materials, exhibiting excellent cycle stability and outstanding rate performance. As a result, a discharge specific capacity of 760 mAh/g is maintained at a high current density of 5 A/g. Using commercial material as cathode and Si@NC as anode, the assembled full LIBs demonstrate a capacity retention of 60.4% at 0.4C (1C =160 mA/g) for 50 cycles. These results indicate that the as-synthesized three-dimensional network porous structure of Si@NC composite has a potential practical application for LIBs.
Get Citation
Copy Citation Text
Nana SU, Jingru HAN, Yinhao GUO, Chenyu WANG, Wenhua SHI, Liang WU, Zhiyi HU, Jing LIU, Yu LI, Baolian SU.
Category: RESEARCH ARTICLE
Received: Dec. 3, 2021
Accepted: --
Published Online: Jan. 12, 2023
The Author Email: LI Yu (yu.li@whut.edu.cn)