Journal of Inorganic Materials, Volume. 34, Issue 7, 709(2019)
A uniform and stable precursor spinning solution was prepared by using polyvinylpyrrolidone (PVP), ferric nitrate nonahydrate and manganese acetate tetrahydrate as raw materials, anhydrous ethanol and N,N-dimethylformamide as solvent, followed by magnetically stirred. The PVP/Mn(COOH)2/Fe(NO3)3 composite nanofibers were prepared by electrospinning technology. FeMnO3 nanofibrous mats were obtained after high temperature calcination, which was used as anode material for lithium battery. Apparent morphology and crystal structure of the samples were investigated by FT-IR, XRD, SEM, and BET specific surface area analyzers. All results showed that the fabricated FeMnO3 nanofibrous mats possessed good structural morphology with the specific surface area of 9.9 m 2/g. TG analysis showed that when temperature reaches 470 ℃, the TG curve becomes gentle while the mass loss is not obvious. Results form charge and discharge, cyclic voltammetry, and cycle performance tests, indicated that FeMnO3 nanofibrous mats had good electrochemical performance and electrical stability, with a specific capacity of 533 mAh/g at 50 mA/g after 37 cycles. After 50 cycles, the impedance is approximately 170 Ω, which remains essentially unchanged.
Get Citation
Copy Citation Text
Xiao-Lu SUN, Xiao-Fei SONG, Yan-Hua LIU, Yue WU, Yi-Bing CAI, Hong-Mei ZHAO.
Category: RESEARCH PAPER
Received: Sep. 6, 2018
Accepted: --
Published Online: Sep. 26, 2021
The Author Email: CAI Yi-Bing (yibingcai@163.com)