Nano-Micro Letters, Volume. 16, Issue 1, 062(2024)
Proof of Aerobically Autoxidized Self-Charge Concept Based on Single Catechol-Enriched Carbon Cathode Material
The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting, conversion and storage without an external power supply. However, most self-charging designs assembled by multiple energy harvesting, conversion and storage materials increase the energy transfer loss; the environmental energy supply is generally limited by climate and meteorological conditions, hindering the potential application of these self-powered devices to be available at all times. Based on aerobic autoxidation of catechol, which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge, we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups. Energy harvesting, conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials. Moreover, the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications. This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.
Get Citation
Copy Citation Text
Junyan Wang, Wanchun Guo, Kesong Tian, Xinta Li, Xinyu Wang, Panhua Li, Yu Zhang, Bosen Zhang, Biao Zhang, Shuhu Liu, Xueai Li, Zhaopeng Xu, Junjie Xu, Haiyan Wang, Yanglong Hou. Proof of Aerobically Autoxidized Self-Charge Concept Based on Single Catechol-Enriched Carbon Cathode Material[J]. Nano-Micro Letters, 2024, 16(1): 062
Category: Research Articles
Received: Jul. 20, 2023
Accepted: Nov. 8, 2023
Published Online: Jan. 23, 2025
The Author Email: Guo Wanchun (wc-g@ysu.edu.cn), Tian Kesong (tiankesong@ysu.edu.cn), Wang Haiyan (hywang@ysu.edu.cn), Hou Yanglong (hou@pku.edu.cn)