Nano-Micro Letters, Volume. 15, Issue 1, 229(2023)
Fast and Stable Zinc Anode-Based Electrochromic Displays Enabled by Bimetallically Doped Vanadate and Aqueous Zn2+/Na+ Hybrid Electrolytes
Vanadates are a class of the most promising electrochromic materials for displays as their multicolor characteristics. However, the slow switching times and vanadate dissolution issues of recently reported vanadates significantly hinder their diverse practical applications. Herein, novel strategies are developed to design electrochemically stable vanadates having rapid switching times. We show that the interlayer spacing is greatly broadened by introducing sodium and lanthanum ions into V3O8 interlayers, which facilitates the transportation of cations and enhances the electrochemical kinetics. In addition, a hybrid Zn2+/Na+ electrolyte is designed to inhibit vanadate dissolution while significantly accelerating electrochemical kinetics. As a result, our electrochromic displays yield the most rapid switching times in comparison with any reported Zn-vanadate electrochromic displays. It is envisioned that stable vanadate-based electrochromic displays having video speed switching are appearing on the near horizon.
Get Citation
Copy Citation Text
Zhaoyang Song, Bin Wang, Wu Zhang, Qianqian Zhu, Abdulhakem Y. Elezzabi, Linhua Liu, William W. Yu, Haizeng Li. Fast and Stable Zinc Anode-Based Electrochromic Displays Enabled by Bimetallically Doped Vanadate and Aqueous Zn2+/Na+ Hybrid Electrolytes[J]. Nano-Micro Letters, 2023, 15(1): 229
Category: Research Articles
Received: Jun. 27, 2023
Accepted: Sep. 6, 2023
Published Online: Dec. 15, 2023
The Author Email: Zhu Qianqian (zhuqianqian@qdu.edu.cn), Li Haizeng (haizeng@sdu.edu.cn)