Optoelectronics Letters, Volume. 18, Issue 7, 444(2022)

Robust discriminative broad learning system for hyperspectral image classification

Liguo ZHAO1... Zhe HAN1,* and Yong LUO2 |Show fewer author(s)
Author Affiliations
  • 1School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China
  • 2Guizhou Cloud Big Data Industry Development Co., Ltd., Guiyang 550001, China
  • show less

    With the advantages of simple structure and fast training speed, broad learning system (BLS) has attracted attention in hyperspectral images (HSIs). However, BLS cannot make good use of the discriminative information contained in HSI, which limits the classification performance of BLS. In this paper, we propose a robust discriminative broad learning system (RDBLS). For the HSI classification, RDBLS introduces the total scatter matrix to construct a new loss function to participate in the training of BLS, and at the same time minimizes the feature distance within a class and maximizes the feature distance between classes, so as to improve the discriminative ability of BLS features. RDBLS inherits the advantages of the BLS, and to a certain extent, it solves the problem of insufficient learning in the limited HSI samples. The classification results of RDBLS are verified on three HSI datasets and are superior to other comparison methods.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Liguo, HAN Zhe, LUO Yong. Robust discriminative broad learning system for hyperspectral image classification[J]. Optoelectronics Letters, 2022, 18(7): 444

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 22, 2022

    Accepted: Apr. 9, 2022

    Published Online: Jan. 20, 2023

    The Author Email: Zhe HAN (zlg2002@126.com)

    DOI:10.1007/s11801-022-2043-4

    Topics