[1] M.Babzien, N. P.Dover, G. I.Dudnikova, M.Ispiriyan, Z.Najmudin, C. A. J.Palmer, I.Pogorelsky, M. N.Polyanskiy, J.Schreiber, P.Shkolnikov, V.Yakimenko. Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett., 106, 014801(2011).
[2] S.Ali?auskas, G.Andriukaitis, P.Arpin, T.Bal?iunas, A.Baltu?ka, A.Becker, S.Brown, M.-C.Chen, A.Gaeta, C.Hernández-García, A.Jaron-Becker, H. C.Kapteyn, O. D.Mücke, M. M.Murnane, L.Plaja, D.Popmintchev, T.Popmintchev, A.Pugzlys, S. E.Schrauth, B.Shim. Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers. Science, 336, 1287(2012).
[3] J.Biegert, S. L.Cousin, M.Hemmer, F.Silva, S. M.Teichmann. Spatiotemporal isolation of attosecond soft X-ray pulses in the water window. Nat. Commun., 6, 6611(2015).
[4] A.Becker, C.Hernández-García, A.Jaron-Becker, H. C.Kapteyn, M. M.Murnane, J. A.Pérez-Hernández, L.Plaja, T.Popmintchev. Zeptosecond high harmonic keV x-ray waveforms driven by midinfrared laser pulses. Phys. Rev. Lett., 111, 033002(2013).
[5] S.Ali?auskas, A.Baltu?ka, T.Elsaesser, M.Holtz, V.Juvé, S.Ku, A.Pug?lys, J.Weisshaupt, M.Woerner. High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses. Nat. Photonics, 8, 927-930(2014).
[6] J.Pigeon. Generation of ultra-broadband, mid-IR radiation in GaAs pumped by picosecond 10 μm laser pulses(2014).
[7] S.Ali?auskas, G.Andriukaitis, A.Baltu?ka, A. B.Fedotov, T.Fl?ry, A. V.Mitrofanov, A.Pug?lys, D. A.Sidorov-Biryukov, E. A.Stepanov, A. A.Voronin, A. M.Zheltikov. Mid-infrared laser filaments in the atmosphere. Sci. Rep., 5, 8368(2015).
[8] A.Cavalleri, M.F?rst, S.Kaiser, C.Manzoni, R.Merlin, Y.Tokura, Y.Tomioka. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys., 7, 854-856(2011).
[9] M.Garg, E.Goulielmakis, M. T.Hassan, N.Karpowicz, F.Krausz, T. T.Luu, A.Moulet, V.Pervak, O.Raskazovskaya, A. M.Zheltikov, P.Zhokhov. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature, 530, 66-70(2016).
[10] P.Agostini, C. I.Blaga, A. D.DiChiara, L. F.DiMauro, C. D.Lin, T. A.Miller, E.Sistrunk, J.Xu, K.Zhang. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature, 483, 194-197(2012).
[11] P. A.Budni, R. T.Castro, E. P.Chicklis, E. J.Gustafson, C. R.Ibach, S. D.Setzler. 50-mJ, Q-switched, 2.09-µm holmium laser resonantly pumped by a diode-pumped 1.9-µm thulium laser. Opt. Lett., 28, 1016(2003).
[12] M.Bock, T.Elsaesser, U.Griebner, D.Ueberschaer, L.von Grafenstein. Ho:YLF chirped pulse amplification at kilohertz repetition rates – 4.3 ps pulses at 2 μm with GW peak power. Opt. Lett., 41, 4668-4671(2016).
[13] J. S.Li, J. L.Wang, P.Wang, D. G.Xu, J. Q.Yao, K.Zhong. High-pulse-energy high-efficiency mid-infrared generation based on KTA optical parametric oscillator. Appl. Phys. B, 100, 749-753(2010).
[14] H.Fonnum, M. W.Haakestad, E.Lippert. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2. Opt. Express, 22, 8556-8564(2014).
[15] M.Gong, J.Liu, Q.Liu, Z.Zhang. A high energy 3.75 μm KTA optical parametric oscillator at a critical angle. Laser Phys. Lett., 10, 075407(2013).
[16] D.Haberberger, C.Joshi, S.Tochitsky. Fifteen terawatt picosecond CO2 laser system. Opt. Express, 18, 17865(2010).
[17] D.Brida, G.Cerullo, R.Huber, F.Junginger, A.Leitenstorfer, M.Marangoni, B.Mayer, O.Schubert, A.Sell. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Opt. Lett., 35, 2645-2647(2010).
[18] D. R.Austin, M.Baudisch, J.Biegert, A.Couairon, D.Faccio, M.Hemmer, F.Silva, A.Thai. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nat. Commun., 3, 807(2012).
[19] C.Gong, C.Joshi, J. J.Pigeon, S. Ya.Tochitsky. Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO2 laser pulses. Opt. Lett., 39, 3246-3249(2014).
[20] T.Fuji, K.Ishii, Y.Nomura, H.Shirai, N.Tsurumachi, A. A.Voronin, A. M.Zheltikov. Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases. Opt. Express, 20, 24741-24747(2012).
[21] T.Fuji, Y.Nomura, H.Shirai. Generation and characterization of phase-stable sub-single-cycle pulses at 3000 cm−1. IEEE J. Sel. Top. Quantum Electron., 21, 8700612(2015).
[22] C.Joshi, J. J.Pigeon, S. Ya.Tochitsky, E. C.Welch. Measurements of the nonlinear refractive index of air, N2, and O2 at 10 μm using four-wave mixing. Opt. Lett., 41, 3924-3927(2016).
[23] A.Apolonski, J.Biegert, E.Fill, N.Karpowicz, F.Krausz, N.Lilienfein, T.Paasch-Colberg, V.Pervak, M.Pescher, O.Pronin, I.Pupeza, D.Sánchez, W.Schweinberger, M.Seidel, Z.Wei, J.Zhang, I.Znakovskaya. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nat. Photonics, 9, 721-724(2015).
[24] N.Flemens, K.-H.Hong, F. X.K?rtner, P.Krogen, H.Liang, J.Moses, H.Suchowski. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. Nat. Photonics, 11, 222-226(2017).
[25] Z.Cheng, H.-H.Chu, Y.He, J.Hua, C.Joshi, F.Li, S.Liu, W.Lu, Y.Ma, W. B.Mori, Z.Nie, X.Ning, C.-H.Pai, Q.Su, Y.Wan, J.Wang, Y.Wu, C.Zhang, J.Zhang. Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure. Nat. Photonics, 12, 489-494(2018).
[26] D. F.Gordon, B.Hafizi, L. A.Johnson, J. P.Palastro. Backward Raman amplification in the long-wavelength infrared. Phys. Plasmas, 24, 033107(2017).
[27] Y.Dai, B.Hu, Z.Li, J.Mu, J.Su, X.Wang, X.Wang, Z.Wu, X.Zeng, Z.Zhang, Q.Zhu, Y.Zuo. Laser compression via fast-extending plasma gratings. Matter Radiat. Extremes, 7, 064402(2022).
[28] F.Quéré, C.Thaury. High-order harmonic and attosecond pulse generation on plasma mirrors: Basic mechanisms. J. Phys. B: At., Mol. Opt. Phys., 43, 213001(2010).
[29] A. A.Andreev, C.Riconda, V. T.Tikhonchuk, S.Weber. Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime. Phys. Plasmas, 13, 053110(2006).
[30] C.-K.Huang, C.Joshi, K. A.Marsh, Z.Nie, M.Sinclair, Y.Wu, C.Zhang. Ionization induced plasma grating and its applications in strong-field ionization measurements. Plasma Phys. Controlled Fusion, 63, 095011(2021).
[31] T. M.Antonsen, Y. H.Chen, B. D.Layer, Y.Leng, H. M.Milchberg, S.Varma, A.York. Ultrahigh-intensity optical slow-wave structure. Phys. Rev. Lett., 99, 035001(2007).
[32] S.-Y.Chen, C.-C.Kuo, K.-H.Lee, J.-Y.Lin, M.-W.Lin, C.-H.Pai, J.Wang. Ultrahigh-intensity optical slow-wave structure. Phys. Rev. Lett., 98, 033901(2007).
[33] T. D.Arber, A. R.Bell, K.Bennett, C. S.Brady, R. G.Evans, P.Gillies, A.Lawrence-Douglas, M. G.Ramsay, C. P.Ridgers, H.Schmitz, N. J.Sircombe. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion, 57, 113001(2015).
[34] W. B.Mori. Generation of tunable radiation using an underdense ionization front. Phys. Rev. A, 44, 5118(1991).
[35] R. P. Brogle, C.Joshi, W. B.Mori, R. L.Savage. Frequency upshifting and pulse compression via underdense relativistic ionization fronts. IEEE Trans. Plasma Sci., 21, 5(1993).
[36] J. T.Mendonca, L.Oliveria e Silva. Photon acceleration in superluminous and accelerated ionization fronts. IEEE Trans. Plasma Sci., 24, 316(1996).