Journal of Inorganic Materials, Volume. 36, Issue 11, 1199(2021)

Calcium Silicate Nanowires Based Composite Electrospun Scaffolds: Preparation, Ion Release and Cytocompatibility

Feng BAO1,2 and Jiang CHANG1,2、*
Author Affiliations
  • 11. State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 22. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less

    Electrospun scaffolds have been widely used in tissue engineering, particularly, bioceramics such as calcium silicate (CSH) composite electrospun scaffolds have shown excellent bioactivity by releasing SiO32- ions during the degradation of calcium silicate in composite electrospun scaffolds, which are bioactive in stimulating angiogenesis. However, the effective ion concentration is in a narrow range from 0.79 to 1.8 μg/mL. Therefore, it is of great significance for tissue engineering applications to accurately control the ion release concentration of the calcium silicate composite scaffolds, so that the ions released from materials can remain in the effective concentration range for a long time. In this study, we prepared a variety of scaffolds with calcium silicate composite electrospun by adjusting pore size of electrospun scaffolds and controlling the location of calcium silicate nanowires inside the scaffolds, and compared ions release behavior and bioactivity in promoting proliferation of human umbilical vein endothelial cells in vitro. The results showed that, due to the hydrophobicity of polymers and limited diffusion of small pore size, electrospun scaffolds with small pore size by mixed-electrospinning or electrospinning-electrospraying calcium silicate composite displayed slow-release behavior of SiO32- ions. In vitro cell experiments showed that the electrospun scaffolds with slow ions release promoted the proliferation of human umbilical vein endothelial cells, indicating that the bioactivity of the composite scaffolds could be regulated by adjusting ions release behavior to obtain optimal bioactivity for tissue engineering applications.

    Tools

    Get Citation

    Copy Citation Text

    Feng BAO, Jiang CHANG. Calcium Silicate Nanowires Based Composite Electrospun Scaffolds: Preparation, Ion Release and Cytocompatibility[J]. Journal of Inorganic Materials, 2021, 36(11): 1199

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Jan. 28, 2021

    Accepted: --

    Published Online: Dec. 20, 2021

    The Author Email: CHANG Jiang (jchang@mail.sic.ac.cn)

    DOI:10.15541/jim20210056

    Topics