Nano-Micro Letters, Volume. 16, Issue 1, 078(2024)
Lithium-Ion Charged Polymer Channels Flattening Lithium Metal Anode
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth. Resolving this issue will be key to achieving high-performance lithium metal batteries (LMBs). Herein, we construct a lithium nitrate (LiNO3)-implanted electroactive β phase polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) crystalline polymorph layer (PHL). The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels. These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes, decreasing the growth of lithium dendrites. The stretched molecular channels can also accelerate the transport of Li ions. The combined effects enable a high Coulombic efficiency of 97.0% for 250 cycles in lithium (Li)||copper (Cu) cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm-2 with ultrahigh Li utilization of 50%. Furthermore, the full cell coupled with PHL-Cu@Li anode and LiFePO4 cathode exhibits long-term cycle stability with high-capacity retention of 95.9% after 900 cycles. Impressively, the full cell paired with LiNi0.87Co0.1Mn0.03O2 maintains a discharge capacity of 170.0 mAh g-1 with a capacity retention of 84.3% after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83. This facile strategy will widen the potential application of LiNO3 in ester-based electrolyte for practical high-voltage LMBs.
Get Citation
Copy Citation Text
Haofan Duan, Yu You, Gang Wang, Xiangze Ou, Jin Wen, Qiao Huang, Pengbo Lyu, Yaru Liang, Qingyu Li, Jianyu Huang, Yun-Xiao Wang, Hua-Kun Liu, Shi Xue Dou, Wei-Hong Lai. Lithium-Ion Charged Polymer Channels Flattening Lithium Metal Anode[J]. Nano-Micro Letters, 2024, 16(1): 078
Category: Research Articles
Received: Aug. 8, 2023
Accepted: Nov. 27, 2023
Published Online: Jan. 23, 2025
The Author Email: Wang Gang (esgwang@xtu.edu.cn), Liang Yaru (yaruliang@xtu.edu.cn), Lai Wei-Hong (weihongl@uow.edu.au)