Acta Optica Sinica, Volume. 39, Issue 12, 1214002(2019)

Anti-Resonant Hollow-Core Fibers Based 4.3-μm Carbon Dioxide Lasers

Yulong Cui1,2,3, Zhiyue Zhou1,2,3, Wei Huang1,2,3, Zhixian Li1,2,3, and Zefeng Wang1,2,3、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha, Hunan 410073, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha, Hunan 410073, China
  • show less

    A novel mid-infrared fiber laser is reported based on an anti-resonant hollow-core fiber filled with carbon dioxide gas. A tunable 2-μm semiconductor laser amplified using a thulium-doped fiber is used to pump a low-loss anti-resonant hollow-core fiber with a length of 5 m, which is filled with carbon dioxide gas at low pressure. Particle beam inversion is responsible for obtaining the single-pass fiber laser output at 4.3 μm, which is the longest wavelength that has yet been reported for continuous wave fiber lasers at normal temperature, except for supercontinuum lasers. At a pressure of 500 Pa, the maximum laser output power of the R(30) absorption line is 82 mW and the slope efficiency is approximately 6.8% (relatively coupled pump power entering the hollow-core fiber), whereas the maximum laser output power of the R(28) absorption line is 63 mW and the slope efficiency is approximately 5%. This study provides a potentially effective pathway for obtaining compact and efficient 4-μm fiber gas lasers.

    Tools

    Get Citation

    Copy Citation Text

    Yulong Cui, Zhiyue Zhou, Wei Huang, Zhixian Li, Zefeng Wang. Anti-Resonant Hollow-Core Fibers Based 4.3-μm Carbon Dioxide Lasers[J]. Acta Optica Sinica, 2019, 39(12): 1214002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Jul. 8, 2019

    Accepted: Aug. 13, 2019

    Published Online: Dec. 6, 2019

    The Author Email: Wang Zefeng (zefengwang_nudt@163.com)

    DOI:10.3788/AOS201939.1214002

    Topics