Journal of Applied Optics, Volume. 40, Issue 3, 380(2019)

Nighttime environment perception of driverless vehicles based on improved YOLOv3 network

PEI Jiaxin1,2、*, SUN Shaoyuan1,2, WANG Yulan1,2, LI Dawei1,2, and HUANG Rong1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less

    Environmental perception is a key task of driverless vehicles at night. An improved YOLOv3 network was proposed to realize the detection of pedestrians and vehicles in infrared images captured by driverless vehicles at night. The problem of estimation of the moving direction of surrounding vehicles is transformed into the problem of estimation of the angle of the surrounding vehicle position. Whats more, the network is fused with the depth estimation information to estimate the distance and speed of the surrounding vehicles. Therefore the driverless vehicles can obtain the driving intention of the surrounding vehicles at night. The network has the end-to-end advantage, in which an image is as the input, and the positions of the bounding boxes, the classes and the angle estimation results of the detecting targets are returned directly at the output layer. Moreover, the depth estimation information is combined with the above information to obtain the distance and speed of the surrounding vehicle. The experimental results show that the speed of target detection in the infrared images captured by driverless vehicle is 0.04 s/frame. The effect of angle and speed prediction is good ,and the accuracy and real-time performance meet the requirements of practical application.

    Tools

    Get Citation

    Copy Citation Text

    PEI Jiaxin, SUN Shaoyuan, WANG Yulan, LI Dawei, HUANG Rong. Nighttime environment perception of driverless vehicles based on improved YOLOv3 network[J]. Journal of Applied Optics, 2019, 40(3): 380

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 26, 2018

    Accepted: --

    Published Online: Jun. 10, 2019

    The Author Email: Jiaxin PEI (15000826102@163.com)

    DOI:10.5768/jao201940.0301004

    Topics