[1] H J GOLDSMID. Applications of thermoelectricity, 1-7(1960).
[2] G J SNYDER. Thermoelectric power generation: efficiency and compatibility//ROWE D M. Thermoelectrics handbook: macro to nano. Boca Raton: CRC/Taylor & Francis(2006).
[5] J MAO, G CHEN, Z REN. Thermoelectric cooling materials. Nature Materials, 454(2020).
[6] D PLATZEK, G KARPINSKI, C DRASAR et al. Seebeck scanning microprobe for thermoelectric FGM. Materials Science Forum, 587(2005).
[9] Z CHEN, X ZHANG, Y PEI. Manipulation of phonon transport in thermoelectrics. Advanced Materials, e1705617(2018).
[10] Y PEI, H WANG, G J SNYDER. Band engineering of thermoelectric materials. Advanced Materials, 6125(2012).
[11] W LI, Z CHEN, S LIN et al. Band and scattering tuning for high performance thermoelectric Sn1-xMnxTe alloys. Journal of Materiomics, 307(2015).
[12] Y PEI, A D LALONDE, H WANG et al. Low effective mass leading to high thermoelectric performance. Energy & Environmental Science, 7963(2012).
[13] R HE, G SCHIERNING, K NIELSCH. Thermoelectric devices: a review of devices, architectures, and contact optimization. Advanced Materials Technologies, 1700256(2018).
[14] S SHARMA, V K DWIVEDI, S N PANDIT. A review of thermoelectric devices for cooling applications. International Journal of Green Energy, 899(2014).
[15] J PEI, B W CAI, H L ZHUANG et al. Bi2Te3-based applied thermoelectric materials: research advances and new challenges. National Science Review, 1856(2020).
[16] M HONG, Z G CHEN, J ZIOU. Fundamental and progress of Bi2Te3-based thermoelectric materials. Chinese Physics B, 048403(2018).
[17] L P HU, T J ZHU, X H LIU et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Advanced Functional Materials, 5211(2014).
[18] S AHMAD, A SINGH, A BOHRA et al. Boosting thermoelectric performance of p-type SiGe alloys through in-situ metallic YSi2 nanoinclusions. Nano Energy, 282(2016).
[19] G H ZHU, H LEE, Y C LAN et al. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Physical Review Letters, 196803(2009).
[20] Z W CHEN, X Y ZHANG, J REN et al. Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal Mg2Pb for cryogenic heat pumping. Nature Communications, 3837(2021).
[21] C TANG, Z HUANG, J PEI et al. Bi2Te3 single crystals with high room-temperature thermoelectric performance enhanced by manipulating point defects based on first-principles calculation. RSC Advance, 14422(2019).
[22] C B SATTERTHWAITE, R W URE. Electrical and thermal properties of Bi2Te3. Physical Review, 1164(1957).
[23] Q ZHANG, T FANG, F LIU et al. Tuning optimum temperature range of Bi2Te3-based thermoelectric materials by defect engineering. Chemistry - An Asian Journal, 2775(2020).
[24] I T WITTING, T C CHASAPIS, F RICCI et al. The thermoelectric properties of bismuth telluride. Advanced Electronic Materials, 1800904(2019).
[25] H S KIM, N A HEINZ, Z M GIBBS et al. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. Materials Today, 452(2017).
[26] N MADAR, T GIVON, D MOGILYANSKY et al. High thermoelectric potential of Bi2Te3 alloyed GeTe-rich phases. Journal of Applied Physics, 035102(2016).
[27] D L GREENAWAY, G HARBEKE. Band structure of bismuth telluride, bismuth selenide and their respective alloys. Journal of Physics and Chemistry of Solids, 1585(1965).
[28] T ZHU, L HU, X ZHAO et al. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Advanced Science, 1600004(2016).
[29] B ZHU, X X LIU, Q WANG et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energy & Environmental Science, 2106(2020).
[30] S I KIM, K H LEE, H A MUN et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 109(2015).
[32] C QIN, M JIN, R L ZHANG et al. Preparation and thermoelectric properties of ZnTe-doped Bi0.5Sb1.5Te3 single crystal. Mateials Letters, 129619(2021).
[33] H J GOLDSMID. Introduction to thermoelectricity, 7-21(2009).
[34] A F MAY, G J SNYDER. Introduction to modeling thermoelectric transport at high temperatures. ROWE D W. Materials, preparation, and characterization in thermoelectrics(2012).
[35] M KIM, S I KIM, S W KIM et al. Weighted mobility ratio engineering for high-performance Bi-Te-based thermoelectric materials via suppression of minority carrier transport. Advanced Materials, 2005931(2021).
[36] H J GOLDSMID. Thermoelectric refrigeration(1964).
[38] C A M DOS SANTOS, CAMPOS A DE, LUZ M S DA et al. Procedure for measuring electrical resistivity of anisotropic materials: a revision of the Montgomery method. Journal of Applied Physics, 083703(2011).
[39] M LEVY, M P SARACHIK. Measurement of the Hall coefficient using van der Pauw method without magnetic field reversal. Review of Scientific Instruments, 1342(1989).
[40] T PLECHÁČEK, J NAVRÁTIL, J HORÁK et al. Defect structure of Pb-doped Bi2Te3 single crystals. Philosophical Magazine, 2217(2004).
[41] J NAVRATIL, P LOSTAK, J HORAK. Transport coefficient of gallium-doped Bi2Te3 single-crystals. Crystal Reserch and Technology, 675(1991).
[42] Q ZHANG, R S ZHAI, T FANG et al. Low-cost p-type Bi2Te2.7Se0.3 zone-melted thermoelectric materials for solid-state refrigeration. Journal of Alloys and Compounds, 154732(2020).
[43] U BIRKHOLZ. Untersuchung der intermetallischen Verbindung Bi2Te3 sowie der festen Lösungen Bi2-xSbxTe3 und Bi2Te3-xSex hinsichtlich ihrer Eignung als Material für Halbleiter-Thermoelemente. Zeitschrift für Naturforschung A, 780(1958).
[44] L HU, H WU, T ZHU et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride- based solid solutions. Advanced Energy Materials, 1500411(2015).
[45] C L XIONG, F F SHI, H X WANG et al. Achieving high thermoelectric performance of n-type Bi2Te2.79Se0.21 sintered materials by hot-stacked deformation. ACS Applied Materials & Interfaces, 15429(2021).
[46] G WU, X J TAN, M H YUAN et al. High thermoelectric and mechanical performance in strong-textured n-type Bi2Te2.7Se0.3 by temperature gradient method. Chemical Engineering Journal, 144085(2023).
[47] S Y WANG, G J TAN, W J XIE et al. Enhanced thermoelectric properties of Bi2(Te1-xSex)3-based compounds as n-type legs for low-temperature power generation. Journal of Materials Chemistry, 20943(2012).
[48] W J HUANG, X J TAN, J F CAI et al. Synergistic effects improve thermoelectric properties of zone-melted n-type Bi2Te2.7Se0.3. Materials Today Physics, 101022(2023).
[49] B JARIWALA, D SHAH, N M RAVINDRA. Transport property measurements in doped Bi2Te3 single crystals obtained via zone melting method. Journal of Electronic Materials, 1509(2015).
[50] L LI, P WEI, M J YANG et al. Strengthened interlayer interaction and improved room-temperature thermoelectric performance of Ag-doped n-type Bi2Te2.7Se0.3. Science China Materials, 3651(2023).
[51] J H KIM, H CHO, S Y BACK et al. Lattice distortion and anisotropic thermoelectric properties in hot-deformed CuI-doped Bi2Te2.7Se0.3. Journal of Alloys and Compounds, 152649(2020).
[52] G E LEE, I H KIM, Y S LIM et al. Preparation and thermoelectric properties of iodine-doped Bi2Te2.7Se0.3 solid solutions. Journal of the Korean Physical Society, 696(2014).
[53] W S LIU, Q Y ZHANG, Y C LAN et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Advanced Energy Materials, 577(2011).
[54] S J LI, T CHEN, S H YANG et al. Attaining high figure of merit in the n-type Bi2Te2.7Se0.3-Ag2Te composite system via comprehensive regulation of its thermoelectric properties. ACS Applied Materials & Interfaces, 36457(2023).
[55] Y J JUNG, H S KIM, J H WON et al. Thermoelectric properties of Cu2Te nanoparticle incorporated n-type Bi2Te2.7Se0.3. Materials, 2284(2022).
[56] P ZOU, G Y XU, S WANG et al. Effect of high pressure sintering and annealing on microstructure and thermoelectric properties of nanocrystalline Bi2Te2.7Se0.3 doped with Gd. Progress in Natural Science: Materials International, 210(2014).