Optoelectronics Letters, Volume. 14, Issue 4, 316(2018)

A band selection method of hyperspectral remote sens-ing based on particle frog leaping algorithm

Lin-lin MU, Chao-zhu ZHANG, Peng-fei CHI, and Lian LIU*
Author Affiliations
  • College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
  • show less

    Dimensionality reduction is becoming an important problem in hyperspectral image classification. Band selection as an effective dimensionality reduction method has attracted more research interests. In this paper, a band selection method for hyperspectral remote sensing images based on subspace partition and particle frog leaping optimization algorithm is proposed. Three new evolution strategies are designed to form a probabilistic network extension structure to avoid local convergence. At the same time, the information entropy of the selected band subset is used as the weight of inter-class separability, and a new band selection criterion function is constructed. The simulation results show that the proposed algorithm has certain advantages over the existing similar algorithms in terms of classification accuracy and running time.

    Tools

    Get Citation

    Copy Citation Text

    MU Lin-lin, ZHANG Chao-zhu, CHI Peng-fei, LIU Lian. A band selection method of hyperspectral remote sens-ing based on particle frog leaping algorithm[J]. Optoelectronics Letters, 2018, 14(4): 316

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image and Information processing

    Received: Feb. 27, 2018

    Accepted: Apr. 15, 2018

    Published Online: Apr. 16, 2019

    The Author Email: Lian LIU (liulian0603@126.com.cn)

    DOI:10.1007/s11801-018-8028-7

    Topics