[1] A. P.Drozdov, M. I.Eremets, V.Ksenofontov, S. I.Shylin, I. A.Troyan. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73-76(2015).
[2] A. P.Drozdov et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528-531(2019).
[3] M.Somayazulu et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).
[4] I. A.Troyan et al. Anomalous high-temperature superconductivity in YH6. Adv. Mater., 33, 2006832(2021).
[5] P.Kong et al. Superconductivity up to 243 K in yttrium hydrides under high pressure. Nat. Commun., 12, 5075(2021).
[6] L.Ma et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett., 128, 167001(2022).
[8] D. V.Semenok et al. Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater. Today, 48, 18-28(2021).
[9] D.Zhou et al. Superconducting praseodymium superhydrides. Sci. Adv., 6, eaax6849(2020).
[10] T.Matsuoka et al. Superconductivity of platinum hydride. Phys. Rev. B, 99, 144511(2019).
[11] F.Hong et al. Possible superconductivity at ∼70 K in tin hydride SnHx under high pressure. Mater. Today Phys., 22, 100596(2022).
[12] W.Chen, T.Cui, D.Duan, X.Huang, X.Li, A. R.Oganov, D. V.Semenok, H.Shu. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 Megabar. Phys. Rev. Lett., 127, 117001(2021).
[13] M.Sakata et al. Superconductivity of lanthanum hydride synthesized using AlH3 as a hydrogen source. Supercond. Sci. Technol., 33, 114004(2020).
[14] W.Chen et al. Synthesis of molecular metallic barium superhydride: Pseudocubic BaH12. Nat. Commun., 12, 273(2021).
[15] M. A.Kuzovnikov, M.Tkacz. High-pressure synthesis of novel polyhydrides of Zr and Hf with a Th4H15-type structure. J. Phys. Chem. C, 123, 30059-30066(2019).
[16] D. V.Semenok et al. Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties. Mater. Today, 33, 36-44(2020).
[17] N. N.Wang et al. A low-Tc superconducting modification of Th4H15 synthesized under high pressure. Supercond. Sci. Technol., 34, 034006(2021).
[19] M.Shao et al. Superconducting ScH3 and LuH3 at megabar pressures. Inorg. Chem., 60, 15330(2021).
[20] J.Chen et al. Computational design of novel hydrogen-rich YS–H compounds. ACS Omega, 4, 14317-14323(2019).
[21] J. A.Alarco, I. D. R.Mackinnon, P. C.Talbot. Identification of superconductivity mechanisms and prediction of new materials using density functional theory (DFT) calculations. J. Phys.: Conf. Ser., 1143, 012028(2018).
[22] I. A.Kruglov, A. G.Kvashnin, A. R.Oganov, D. V.Semenok. Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors. J. Phys. Chem. Lett., 9, 1920-1926(2018).
[23] M. I.Eremets, I.Errea, C. J.Pickard. Superconducting hydrides under pressure. Annu. Rev. Condens. Matter Phys., 11, 57-76(2020).
[24] R.Arita, L.Boeri, M.Eremets, J. A.Flores-Livas, G.Profeta, A.Sanna. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep., 856, 1-78(2020).
[25] A.Goncharov. Phase diagram of hydrogen at extreme pressures and temperatures; updated through 2019 (Review article). Low Temp. Phys., 46, 97(2020).
[26] P.Dalladay-Simpson, E.Gregoryanz, R. T.Howie, C.Ji, B.Li, H.-K.Mao. Everything you always wanted to know about metallic hydrogen but were afraid to ask. Matter Radiat. Extremes, 5, 038101(2020).
[27] B.Lilia et al. The 2021 room-temperature superconductivity roadmap. J. Phys.: Condens. Matter, 34, 183002(2022).
[28] G.Yang, X.Zhang, Y.Zhao. Superconducting ternary hydrides under high pressure. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 12, e1582(2021).
[29] M. L.Cohen, M.Dogan. Anomalous behaviour in high-pressure carbonaceous sulfur hydride. Physica C, 583, 1353851(2021).
[30] T.Wang et al. Absence of conventional room temperature superconductivity at high pressure in carbon doped H3S. Phys. Rev. B, 104, 064510(2021).
[31] S.Mozaffari et al. Superconducting phase diagram of H3S under high magnetic fields. Nat. Commun., 10, 2522(2019).
[32] M. I.Eremets, E.Greenberg, V. S.Minkov, V. B.Prakapenka. A boosted critical temperature of 166 K in superconducting D3S synthesized from elemental sulfur and hydrogen. Angew. Chem., Int. Ed., 59, 18970-18974(2020).
[33] R.Matsumoto et al. Electrical transport measurements for superconducting sulfur hydrides using boron-doped diamond electrodes on beveled diamond anvil. Supercond. Sci. Technol., 33, 124005(2020).
[34] D.Laniel et al. Novel sulfur hydrides synthesized at extreme conditions. Phys. Rev. B, 102, 134109(2020).
[35] X.Huang et al. High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility. Natl. Sci. Rev., 6, 713-718(2019).
[36] V. L.Ginzburg, L. D.Landau. Z. Eksp. Teor. Fiz., 20, 1064(1950).
[37] X. J.Zhou et al. High-temperature superconductors: Universal nodal Fermi velocity. Nature, 423, 398(2003).
[38] D. K.Sunko. High-temperature superconductors as ionic metals. J. Supercond. Novel Magn., 33, 27-33(2020).
[39] A. T.Fiory, D. R.Harshman. High-Tc superconductivity in hydrogen clathrates mediated by Coulomb interactions between hydrogen and central-atom electrons. J. Supercond. Novel Magn., 33, 2945-2961(2020).
[40] A. T.Fiory, D. R.Harshman. The superconducting transition temperatures of C–S–H based on inter-sublattice S–H4-tetrahedron electronic interactions. J. Appl. Phys., 131, 015105(2022).
[41] Y. J.Uemura. Bose-Einstein to BCS crossover picture for high-Tc cuprates. Physica C, 282-287, 194-197(1997).
[42] E. F.Talantsev. Comparison of highly-compressed C2/m-SnH12 superhydride with conventional superconductors. J. Phys.: Condens. Matter, 33, 285601(2021).
[43] W. P.Crump, E. F.Talantsev, J. L.Tallon. Universal scaling of the self-field critical current in superconductors: From sub-nanometre to millimetre size. Sci. Rep., 7, 10010(2017).
[44] Y.Ando, D. N.Basov, D. A.Bonn, S. V.Dordevic, M.Greven, W. N.Hardy, C. C.Homes, N.Kaneko, S.Komiya, R.Liang, M.Strongin, T.Timusk, G.Yu, X.Zhao. A universal scaling relation in high-temperature superconductors. Nature, 430, 539-541(2004).
[45] M. R.Koblischka, A.Koblischka-Veneva. Calculation of Tc of superconducting elements with the Roeser–Huber formalism. Metals, 12, 337(2022).
[46] F. F.Balakirev, L.Balicas, S. L.Bud’ko, A. P.Drozdov, M. I.Eremets, P. P.Kong, V.Ksenofontov, V. S.Minkov, S.Mozaffari, R.Prozorov, S. I.Shylin, D.Sun. High-temperature superconductivity in hydrides: Experimental evidence and details. J. Supercond. Novel Magn., 35, 965-977(2022).
[47] A.Brooks, J.Buhot, S.Cross, T.Fedotenko, S.Friedemann, O.Lord, O.Moulding, T.Muramatsu, I.Osmond. Clean-limit superconductivity in Im3̄m H3S synthesized from sulfur and hydrogen donor ammonia borane. Phys. Rev. B, 105, L220502(2022).
[48] D. V.Semenok et al. Effect of magnetic impurities on superconductivity in LaH10. Adv. Mater.(2022).
[49] W. P.Crump, J. G.Storey, E. F.Talantsev, J. L.Tallon. London penetration depth and thermal fluctuations in the sulphur hydride 203 K superconductor. Ann. Phys., 529, 1600390(2017).
[50] F. F.Balakirev, S. L.Bud’ko, S.Chariton, M. I.Eremets, R. J.Husband, H. P.Liermann, V. S.Minkov, V. B.Prakapenka. Magnetic field screening in hydrogen-rich high-temperature superconductors. Nat. Commun., 13, 3194(2022).
[51] J.Bardeen, L. N.Cooper, J. R.Schrieffer. Theory of superconductivity. Phys. Rev., 108, 1175-1204(1957).
[52] E. F.Talantsev. Classifying superconductivity in compressed H3S. Mod. Phys. Lett. B, 33, 1950195(2019).
[53] I.Errea et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature, 578, 66-69(2020).
[54] G. B.Bachelet, L.Boeri, S.di Cataldo, C.Heil. Superconductivity in sodalite-like yttrium hydride clathrates. Phys. Rev. B, 99, 220502(R)(2019).
[55] J. A.Camargo-Martínez et al. The higher superconducting transition temperature Tc and the functional derivative of Tc with α2F(ω) for electron–phonon superconductors. J. Phys.: Condens. Matter, 32, 505901(2020).
[56] H.Casimir, C. J.Gorter. On supraconductivity I. Physica, 1, 306-320(1934).
[57] B. S.Chandrasekhar, J. K.Hulm, C. K.Jones. Upper critical field of solid solution alloys of the transition elements. Rev. Mod. Phys., 36, 74(1964).
[58] L. P.Gor’kov. The critical supercooling field in superconductivity theory. Sov. Phys. JETP, 10, 593-599(1960).
[59] T.Baumgartner, L.Bottura, M.Eisterer, R.Flükiger, C.Scheuerlein, H. W.Weber. Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires. Supercond. Sci. Technol., 27, 015005(2014).
[60] D.Sun et al. High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride. Nat. Commun., 12, 6863(2021).
[61] E.Helfand, N. R.Werthamer. Temperature and purity dependence of the superconducting critical field, Hc2. II. Phys. Rev., 147, 288-294(1966).
[62] E.Helfand, P. C.Hohenberg, N. R.Werthamer. Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects. Phys. Rev., 147, 295-302(1966).
[63] H.Ninomiya et al. Superconductivity in a scandium borocarbide with a layered crystal structure. Inorg. Chem., 58, 15629-15636(2019).
[64] H.Xie et al. Superconducting zirconium polyhydrides at moderate pressures. J. Phys. Chem. Lett., 11, 646-651(2020).
[65] W.Zhang et al. A new superconducting 3R-WS2 phase at high pressure. J. Phys. Chem. Lett., 12, 3321-3327(2021).
[66] M.Scuderi et al. Nanoscale analysis of superconducting Fe(Se,Te) epitaxial thin films and relationship with pinning properties. Sci. Rep., 11, 20100(2021).
[67] K.Ma et al. Group-9 transition-metal suboxides adopting the filled-Ti2Ni structure: A class of superconductors exhibiting exceptionally high upper critical fields. Chem. Mater., 33, 8722-8732(2021).
[68] M.Boubeche et al. Enhanced superconductivity with possible re-appearance of charge density wave states in polycrystalline Cu1-xAgxIr2Te4 alloys. J. Phys. Chem. Solids, 163, 110539(2022).
[69] E. F.Talantsev. Advanced McMillan’s equation and its application for the analysis of highly-compressed superconductors. Supercond. Sci. Technol., 33, 094009(2020).
[70] E. F.Talantsev. The electron–phonon coupling constant and the Debye temperature in polyhydrides of thorium, hexadeuteride of yttrium, and metallic hydrogen phase III. J. Appl. Phys., 130, 195901(2021).
[71] F.Gross et al. Anomalous temperature dependence of the magnetic field penetration depth in superconducting UBe13. Z. Phys. B: Condens. Matter, 64, 175-188(1986).
[72] K.Andres, B. S.Chandrasekhar, D.Einzel, F.Gro?-Alltag, P. J.Hirschfeld. London field penetration in heavy fermion superconductors. Z. Phys. B: Condens. Matter, 82, 243-255(1991).
[73] E. F.Talantsev. In-plane p-wave coherence length in iron-based superconductors. Results Phys., 18, 103339(2020).
[74] C. B.Satterthwaite, I. L.Toepke. Superconductivity of hydrides and deuterides of thorium. Phys. Rev. Lett., 25, 741-743(1970).
[75] A. B.Migdal. Interaction between electrons and lattice vibrations in a normal metal. Sov. Phys. JETP, 7, 996-1001(1958).
[76] G. M.Eliashberg. Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP, 11, 696-702(1960).
[77] F.Marsiglio. Eliashberg theory: A short review. Ann. Phys., 417, 168102(2020).
[78] C.Grimaldi, L.Pietronero, S.Str?ssler. Nonadiabatic superconductivity. I. Vertex corrections for the electron-phonon interactions. Phys. Rev. B, 52, 10516-10529(1995).
[79] C.Grimaldi, L.Pietronero, S.Str?ssler. Nonadiabatic superconductivity. II. Generalized Eliashberg equations beyond Migdal’s theorem. Phys. Rev. B, 52, 10530-10546(1995).
[80] E.Cappelluti, C.Grimaldi, L.Pietronero. Isotope effect on m* in high Tc materials due to the breakdown of Migdal’s theorem. Europhys. Lett., 42, 667(1998).
[81] E.Cappelluti, S.Ciuchi, C.Grimaldi, L.Pietronero, S.Str?ssler. High Tc superconductivity in MgB2 by nonadiabatic pairing. Phys. Rev. Lett., 88, 117003(2002).
[82] L.Boeri, E.Cappelluti, L.Ortenzi, L.Pietronero. Conventional/unconventional superconductivity in high-pressure hydrides and beyond: Insights from theory and perspectives. Quantum Stud.: Math. Found., 5, 5-21(2018).
[83] F.Bloch. Zum elektrischen widerstandsgesetz bei tiefen temperaturen. Z. Phys., 59, 208-214(1930).
[84] F. J.Blatt. Physics of Electronic Conduction in Solids, 185-190(1968).
[85] E. F.Talantsev. Classifying hydrogen-rich superconductors. Mater. Res. Express, 6, 106002(2019).
[86] E. F.Talantsev. An approach to identifying unconventional superconductivity in highly-compressed superconductors. Supercond. Sci. Technol., 33, 124001(2020).
[87] R. C.Mataira, E. F.Talantsev. Classifying superconductivity in ThH-ThD superhydrides/superdeuterides. Mater. Res. Express, 7, 016003(2020).
[88] E. F.Talantsev. The electron-phonon coupling constant, Fermi temperature and unconventional superconductivity in the carbonaceous sulfur hydride 190 K superconductor. Supercond. Sci. Technol., 34, 034001(2021).
[90] J.Hao, Y.Li, Y.Li, H.Liu, Y.Ma. The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys., 140, 174712(2014).
[91] T.Cui, D.Duan, X.Huang, D.Li, B.Liu, Y.Liu, F.Tian, W.Tian, H.Yu, Z.Zhao. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 4, 6968(2014).
[93] G.Liu, H.Liu, L.Ma, Y.Ma, H.Wang, K.Wang, Y.Wang, Y.Xie, X.Yang, X.Yu, Y.Zhao, M.Zhou. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett., 128, 167001(2022).
[94] T.Iitaka, Y.Ma, K.Tanaka, J. S.Tse, H.Wang. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. U. S. A., 109, 6463-6466(2012).
[95] M.Amboage, M. I.Eremets, I.Goncharenko, M.Hanfland, I. A.Trojan, J. S.Tse, Y.Yao. Pressure-induced hydrogen-dominant metallic state in aluminum hydride. Phys. Rev. Lett., 100, 045504(2008).
[96] F.Belli, R.Bianco, I.Errea, P.Hou. Strong anharmonic and quantum effects in Pm3̄nAlH3 under high pressure: A first-principles study. Phys. Rev. B, 103, 134305(2021).
[97] N. W.Ashcroft. Metallic hydrogen: A high-temperature superconductor?. Phys. Rev. Lett., 21, 1748-1749(1968).
[98] V. L.Ginzburg. Superfluidity and superconductivity in the universe. J. Stat. Phys., 1, 3-24(1969).
[99] R. H.Caton, J. F.Miller, C. B.Satterthwaite. Low-temperature heat capacity of normal and superconducting thorium hydride and thorium deuteride. Phys. Rev. B, 14, 2795(1976).
[101] C. W.Glass, A. R.Oganov. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys., 124, 244704-244715(2006).
[102] A. O.Lyakhov, A. R.Oganov, M.Valle. How evolutionary crystal structure prediction works—And why. Acc. Chem. Res., 44, 227-237(2011).
[103] A. O.Lyakhov, A. R.Oganov, H. T.Stokes, Q.Zhu. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun., 184, 1172-1182(2013).
[104] P.Ganesh, R. J.Hemley, P. R. C.Kent, M.Somayazulu, T. A.Strobel. Novel cooperative interactions and structural ordering in H2S–H2. Phys. Rev. Lett., 107, 255503(2011).
[106] N. W.Ashcroft, R. J.Hemley, R.Hoffmann, H.Liu, I. I.Naumov. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. U. S. A., 114, 6990-6995(2017).