[2] Z.Gan, S.Li, W.Li, X.Liu, Y.Liu, C.Wang, X.Wang, Y.Xu, L.Yu, L.Yuet?al.. The Shanghai Superintense Ultrafast Laser Facility (SULF) project. Progress in Ultrafast Intense Laser Science XVI, 199-217(2021).
[3] Y.Leng, R.Li, Y.Li, Y.Peng, J.Qian, B.Shao, P.Wang. Broad-bandwidth high-temporal-contrast carrier-envelope-phase-stabilized laser seed for 100 PW lasers. Opt. Lett., 45, 2215-2218(2020).
[5] C. D.Baird, K. T.Behm, T. G.Blackburn, J. M.Cole, M. J.Duff, E.Gerstmayr, C.Harvey, A.Ilderton, A. S.Joglekar, K.Krushelnick, S.Kuschel, S. P. D.Mangles, M.Marklund, P.McKenna, C. D.Murphy, Z.Najmudin, K.Poder, C. P.Ridgers, G. M.Samarin, G.Sarri, D. R.Symes, A. G. R.Thomas, J.Warwick, J. C.Wood, M.Zepf. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Phys. Rev. X, 8, 011020(2018).
[6] C. D.Baird, K.Behm, S.Bohlen, J. M.Cole, D. J.Corvan, A.Di Piazza, M.Duff, E.Gerstmayr, C. H.Keitel, K.Krushelnick, S.Kuschel, S. P. D.Mangles, P.McKenna, C. D.Murphy, Z.Najmudin, K.Poder, C. P.Ridgers, G. M.Samarin, G.Sarri, D. R.Symes, M.Tamburini, A. G. R.Thomas, J.Warwick, M.Zepf. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X, 8, 031004(2018).
[7] A.Di Piazza, C. H.Keitel, A.Macchi, F.Pegoraro, M.Tamburini. Radiation reaction effects on radiation pressure acceleration. New J. Phys., 12, 123005(2010).
[8] T. V.Liseykina, A.Macchi, F.Pegoraro, M.Tamburini. Radiation-pressure-dominant acceleration: Polarization and radiation reaction effects and energy increase in three-dimensional simulations. Phys. Rev. E, 85, 016407(2012).
[9] I. Y.Kostyukov, A. G.Litvak, E. N.Nerush. Radiative damping in plasma-based accelerators. Phys. Rev. Spec. Top.--Accel. Beams, 15, 111001(2012).
[10] R.Capdessus, E.d’Humières, V. T.Tikhonchuk. Modeling of radiation losses in ultrahigh power laser-matter interaction. Phys. Rev. E, 86, 036401(2012).
[11] R.Capdessus, P.McKenna. Influence of radiation reaction force on ultraintense laser-driven ion acceleration. Phys. Rev. E, 91, 053105(2015).
[12] I. Y.Kostyukov, E. N.Nerush. Laser-driven hole boring and gamma-ray emission in high-density plasmas. Plasma Phys. Controlled Fusion, 57, 035007(2015).
[13] A. M.Fedotov, E. G.Gelfer, S.Weber. Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields. Plasma Phys. Controlled Fusion, 60, 064005(2018).
[14] N.Elkina, A.Fedotov, E.Gelfer. Unexpected impact of radiation friction: Enhancing production of longitudinal plasma waves. Sci. Rep., 8, 6478(2018).
[15] A. M.Fedotov, E. G.Gelfer, S.Weber. Radiation induced acceleration of ions in a laser irradiated transparent foil. New J. Phys., 23, 095002(2021).
[16] A. A.Golovanov, I. Y.Kostyukov, E. N.Nerush. Radiation reaction-dominated regime of wakefield acceleration. New J. Phys., 24, 033011(2022).
[17] R. A.Fonseca, T.Grismayer, J. L.Martins, L. O.Silva, M.Vranic. Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses. Phys. Plasmas, 23, 056706(2016).
[18] C. P.Ridgers, A. G. R.Thomas, P.Zhang. The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas. New J. Phys., 17, 043051(2015).
[20] T. V.Liseykina, A.Macchi, S. V.Popruzhenko. Inverse Faraday effect driven by radiation friction. New J. Phys., 18, 072001(2016).
[21] T. V.Liseykina, A.Macchi, S. V.Popruzhenko. Quantum effects on radiation friction driven magnetic field generation. Eur. Phys. J. Plus, 136, 170(2021).
[22] I. Y.Kostyukov, E. N.Nerush, A. S.Samsonov. Effect of electron–positron plasma production on the generation of a magnetic field in laser-plasma interactions. Quantum Electron., 51, 861-865(2021).
[23] T. G.Blackburn, D.Del Sorbo, J. G.Kirk, C. D.Murphy, C. P.Ridgers, D.Seipt, A. G. R.Thomas. Spin polarization of electrons by ultraintense lasers. Phys. Rev. A, 96, 043407(2017).
[24] D.Del Sorbo, C. P.Ridgers, D.Seipt, A. G. R.Thomas. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers. Plasma Phys. Controlled Fusion, 60, 064003(2018).
[25] Y.-Y.Chen, K. Z.Hatsagortsyan, P.-L.He, C. H.Keitel, R.Shaisultanov. Polarized positron beams via intense two-color laser pulses. Phys. Rev. Lett., 123, 174801(2019).
[26] D.Del Sorbo, C. P.Ridgers, D.Seipt, A. G. R.Thomas. Ultrafast polarization of an electron beam in an intense bichromatic laser field. Phys. Rev. A, 100, 061402(2019).
[27] M.Büscher, B.Feng, X.Geng, Z.Guo, A.Hützen, L.Ji, R.Li, A.Pukhov, C.Qin, T. P.Rakitzis, B.Shen, J.Thomas, N.Wang, W.Wang, Y.Wu, X.Yan, Q.Yu, L.Zhang. Polarized electron-beam acceleration driven by vortex laser pulses. New J. Phys., 21, 073052(2019).
[28] K. Z.Hatsagortsyan, C. H.Keitel, J.-X.Li, Y.-F.Li, R.Shaisultanov, F.Wan. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse. Phys. Rev. Lett., 122, 154801(2019).
[29] Y.-Y.Chen, H.-S.Hu, Y.-F.Li, W.-M.Wang. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field. Phys. Rev. Lett., 125, 044802(2020).
[30] K. Z.Hatsagortsyan, C. H.Keitel, J.-X.Li, Y.-F.Li, R.Shaisultanov, F.Wan. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams. Phys. Lett. B, 800, 135120(2020).
[31] Z.Gong, K. Z.Hatsagortsyan, C. H.Keitel. Retrieving transient magnetic fields of ultrarelativistic laser plasma via ejected electron polarization. Phys. Rev. Lett., 127, 165002(2021).
[32] I. Yu.Kostyukov, E. N.Nerush. Radiation emission by extreme relativistic electrons and pair production by hard photons in a strong plasma wakefield. Phys. Rev. E, 75, 057401(2007).
[33] A. R.Bell, J. G.Kirk. Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett., 101, 200403(2008).
[34] N. V.Elkina, A. M.Fedotov, I. Y.Kostyukov, N. B.Narozhny, E. N.Nerush, H.Ruhl. Laser field absorption in self-generated electron-positron pair plasma. Phys. Rev. Lett., 106, 035001(2011).
[35] T. D.Arber, A. R.Bell, K.Bennett, C. S.Brady, R.Duclous, J. G.Kirk, C. P.Ridgers, A. P. L.Robinson. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. Phys. Rev. Lett., 108, 165006(2012).
[36] A. M.Fedotov, N. B.Narozhny. Quantum-electrodynamic cascades in intense laser fields. Phys.-Usp., 58, 95(2015).
[37] I. Y.Kostyukov, E. N.Nerush. Production and dynamics of positrons in ultrahigh intensity laser-foil interactions. Phys. Plasmas, 23, 093119(2016).
[38] R. A.Fonseca, T.Grismayer, J. L.Martins, L. O.Silva, M.Vranic. Seeded QED cascades in counterpropagating laser pulses. Phys. Rev. E, 95, 023210(2017).
[39] M.Jirka, O.Klimo, G.Korn, M.Vranic, S.Weber. QED cascade with 10 PW-class lasers. Sci. Rep., 7, 15302(2017).
[40] M.Chen, D.Del Sorbo, F.-Y.Li, W.-Y.Liu, W.Luo, C. P.Ridgers, Z.-M.Sheng, J.-Y.Yu, T.Yuan. QED cascade saturation in extreme high fields. Sci. Rep., 8, 8400(2018).
[41] M.Chen, W. Y.Liu, W.Luo, Z. M.Sheng, S. M.Weng, J. Y.Yu, T.Yuan, X. H.Yuan, J.Zhang. Spatiotemporal distributions of pair production and cascade in solid targets irradiated by ultra-relativistic lasers with different polarizations. Plasma Phys. Controlled Fusion, 60, 065003(2018).
[42] D. R.Blackman, R.Capdessus, D.Del Sorbo, M. J.Duff, W.Luo, P.McKenna, A. P. L.Robinson, Z.-M.Sheng, C.Slade-Lowther, K.Smallet?al.. Efficient ion acceleration and dense electron–positron plasma creation in ultra-high intensity laser-solid interactions. New J. Phys., 20, 033014(2018).
[43] Z.-Y.Ge, L.-X.Hu, J.-X.Liu, K.Liu, Y.Lu, F.-Q.Shao, W.-Q.Wang, Y.Yin, T.-P.Yu. Enhanced copious electron–positron pair production via electron injection from a mass-limited foil. Plasma Phys. Controlled Fusion, 60, 125008(2018).
[44] M.Chen, F.-Y.Li, W.-Y.Liu, W.Luo, Y.-Y.Ma, Z.-M.Sheng, S.-D.Wu, J.-Y.Yu, T.Yuan. Enhanced electron-positron pair production by two obliquely incident lasers interacting with a solid target. Plasma Phys. Controlled Fusion, 60, 095006(2018).
[45] A. V.Bashinov, S. I.Bastrakov, E. S.Efimenko, A. A.Gonoskov, A. V.Kim, I. B.Meyerov, A. A.Muraviev, A. M.Sergeev. Laser-driven plasma pinching in e−e+ cascade. Phys. Rev. E, 99, 031201(2019).
[46] I. Y.Kostyukov, E. N.Nerush, A. S.Samsonov. Laser-driven vacuum breakdown waves. Sci. Rep., 9, 11133(2019).
[47] I. Y.Kostyukov, E. N.Nerush, A. S.Samsonov. Hydrodynamical model of QED cascade expansion in an extremely strong laser pulse. Matter Radiat. Extremes, 6, 034401(2021).
[49] A.Nikishov, V.Ritus. Quantum processes in the field of a plane electromagnetic wave and in a constant field I. Sov. Phys. JETP, 19, 529-541(1964).
[50] V. B.Berestetskii, E. M.Lifshitz, L. P.Pitaevskii. Quantum Electrodynamics(1982).
[51] V.Ritus. Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res., 6, 497(1985).
[52] M. K.Khokonov, H.Nitta. Standard radiation spectrum of relativistic electrons: Beyond the synchrotron approximation. Phys. Rev. Lett., 89, 094801(2002).
[53] A.Ilderton, B.King, D.Seipt. Extended locally constant field approximation for nonlinear Compton scattering. Phys. Rev. A, 99, 042121(2019).
[54] T.Heinzl, B.King, A.MacLeod. Locally monochromatic approximation to QED in intense laser fields. Phys. Rev. A, 102, 063110(2020).
[55] A. M.Fedotov, E. G.Gelfer, A. A.Mironov, S.Weber. Nonlinear Compton scattering in time-dependent electric fields beyond the locally constant crossed field approximation. Phys. Rev. D, 106, 056013(2022).
[56] A.Di Piazza, T.Podszus. High-energy behavior of strong-field QED in an intense plane wave. Phys. Rev. D, 99, 076004(2019).
[57] I. I.Artemenko, I. Yu.Kostyukov, E. N.Nerush. Quasiclassical approach to synergic synchrotron-cherenkov radiation in polarized vacuum. New J. Phys, 22, 093072(2020).
[58] I.Arka, A. R.Bell, J. G.Kirk. Pair production in counter-propagating laser beams. Plasma Phys. Controlled Fusion, 51, 085008(2009).
[59] S.Bulanov, E.Esarey, W.Leemans, C.Schroeder. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses. Phys. Rev. A, 87, 062110(2013).
[60] S. S.Bulanov, S. V.Bulanov, T. Z.Esirkepov, M.Kando, J. K.Koga, K.Kondo, G.Korn, N. N.Rosanov. Attractors and chaos of electron dynamics in electromagnetic standing wave. Phys. Lett. A, 379, 2044(2015).
[61] F.Amiranoff, R.Duclous, M.Grech, F.Niel, C.Riconda. From quantum to classical modeling of radiation reaction: A focus on stochasticity effects. Phys. Rev. E, 97, 043209(2018).
[62] T.Blackburn, S.Bulanov, A.Gonoskov, M.Marklund. Charged particle motion and radiation in strong electromagnetic fields. Rev. Mod. Phys, 94, 045001(2022).
[63] C. S.Shen, D.White. Energy straggling and radiation reaction for magnetic bremsstrahlung. Phys. Rev. Lett., 28, 455(1972).
[64] A. R.Bell, R.Duclous, J. G.Kirk. Monte Carlo calculations of pair production in high-intensity laser–plasma interactions. Plasma Phys. Controlled Fusion, 53, 015009(2010).
[65] A.Gonoskov, C. N.Harvey, A.Ilderton, M.Marklund. Quantum quenching of radiation losses in short laser pulses. Phys. Rev. Lett., 118, 105004(2017).
[66] A.Di Piazza, N.Neitz. Stochasticity effects in quantum radiation reaction. Phys. Rev. Lett., 111, 054802(2013).
[67] C. D.Baird, T. G.Blackburn, L. E.Bradley, D.Del Sorbo, S. P. D.Mangles, M.Marklund, P.McKenna, C. D.Murphy, C. P.Ridgers, C.Slade-Lowther, A. G. R.Thomas. Signatures of quantum effects on radiation reaction in laser–electron-beam collisions. J. Plasma Phys., 83, 715830502(2017).
[68] W.Gerlach, O.Stern. Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Z. Phys., 9, 349-352(1922).
[69] L. H.Thomas. The motion of the spinning electron. Nature, 117, 514(1926).
[70] V.Bargmann, L.Michel, V. L.Telegdi. Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett., 2, 435(1959).
[71] S. R.Mane, Yu. M.Shatunov, K.Yokoya. Spin-polarized charged particle beams in high-energy accelerators. Rep. Prog. Phys, 68, 1997(2005).
[72] D.Del Sorbo, C. P.Ridgers, D.Seipt, A. G. R.Thomas. Polarized QED cascades. New J. Phys., 23, 053025(2021).
[73] C. H.Keitel, M.Tamburini, M.Wen. Polarized laser-wakefield-accelerated kiloampere electron beams. Phys. Rev. Lett., 122, 214801(2019).
[74] I. Y.Kostyukov, E. N.Nerush, A. S.Samsonov. Asymptotic electron motion in the strongly-radiation-dominated regime. Phys. Rev. A, 98, 053858(2018).
[75] A.Gonoskov, M.Marklund. Radiation-dominated particle and plasma dynamics. Phys. Plasmas, 25, 093109(2018).
[76] P.Jér?me. Particle acceleration and radiation reaction in a strongly magnetised rotating dipole. Astron. Astrophys, 666, A5(2022).
[78] Y. B.Zel’dovich. Interaction of free electrons with electromagnetic radiation. Sov. Phys. Usp, 18, 79(1975).
[79] L. D.Landau. The Classical Theory of Fields(2013).
[80] A. D.Piazza. Exact solution of the Landau-Lifshitz equation in a plane wave. Lett. Math. Phys., 83, 305-313(2008).
[81] J. E.Gunn, J. P.Ostriker. On the motion and radiation of charged particles in strong electromagnetic waves. I. Motion in plane and spherical waves. Astrophys. J., 165, 523(1971).
[82] M.Grewing, H.Heintzmann, E.Schrüfer. Acceleration of charged particles and radiation reaction in strong plane and spherical waves. II. Z. Phys. A: Hadrons Nucl., 260, 375-384(1973).
[83] K.Thielheim. Particle acceleration in extremely strong electromagnetic wave fields, 276-278(1993).
[84] R.Ekman, T.Heinzl, A.Ilderton. Exact solutions in radiation reaction and the radiation-free direction. New J. Phys., 23, 055001(2021).