Acta Photonica Sinica, Volume. 52, Issue 9, 0906001(2023)

Absolute Phase of the Radio Frequency Transfer over Optical Fiber with Phase Self-calibration

Jinbo ZHANG, Liang HU*, Qi LI, Jianping CHEN, and Guiling WU
Author Affiliations
  • State Key Lab of Advanced Optical Communication Systems and Networks,School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China
  • show less

    As basic physical quantities, time and frequency are the research basis of many applied fields, such as verification of basic physics, clock-based geodetic survey, positioning and navigation. Optical fiber is an ideal medium for high stability time-frequency transmission due to its advantages of low loss, large bandwidth and strong anti-electromagnetic interference. At present, mainstream frequency transmission schemes can be roughly divided into optical frequency, optical frequency comb and radio frequency transmission. However, most of the existing time-frequency transmission systems can only guarantee a constant phase difference during the operation of the system, and ignore the phase difference change that may occur after relocking when the system is restarted or the system link length is changed. This situation cannot meet the needs of some coherent applications, such as distributed phased array radar, radio telescope arrays. These applications not only require stable phase difference during operation, but also require that the value of phase difference does not change after multiple restarts, which can provide reference signals of the same frequency and phase between different sites to achieve more effective coherent processing.In this paper, an absolute phase transfer scheme for optical fiber radio frequency based on adjustable optical delay line is proposed. The scheme makes full use of the round-trip transmission delay of the time signal to determine the integer period of the phase of frequency signal. Combined with the high precision phase measurement of microwave frequency, a microwave frequency signal with a fixed phase difference between the remote signal and the local signal can be obtained when the system is shut down and restarted for many times. In this scheme, 1PPS signal is not directly used as a time reference signal. First, RC differential circuit and avalanche triple laser are used to convert 1PPS signal into narrow pulse signal, and then surface acoustic wave filter is used to filter the narrow pulse signal to obtain the narrow band time reference signal. By means of frequency division multiplexing, time signal and microwave frequency signal are coupled in the same wavelength channel for transmission so as to avoid the delay difference introduced in different wavelength transmission. The system uses the way of wavelength division multiplexing to transmit. The return time frequency signal is obtained by a loop method and compared with the local reference signal to obtain the round-trip link delay and link cumulative phase. The cumulative phase of the link is used as an error signal to control the optical delay line to stabilize the link, and then the absolute phase transmission is realized by using the calculated link delay to calibrate the integer period of frequency signal. Compared with other time-frequency co-transmission modes, the system of this scheme is simpler. It does not need to adopt multiple modulation modes, nor does it directly modulate 1PPS signal. Narrow-band filter can be used to separate the time signal from the microwave frequency signal so that they do not affect each other.The experiment was carried out on a 60 km optical fiber link. After transmission, the system obtained a frequency stability of better than 4×10-14@1 s, 5×10-17@10 000 s. After the link is stabilized, the measured stability of time transfer (TDEV) is 10 ps@1 s and 0.3 ps@10 000 s. The results show that this scheme has good link compensation effect. When the system is restarted several times, the maximum inconsistency of the average phase difference is 0.008 rad, corresponding to 0.15% of the whole cycle, which can ensure the realization of good phase consistency.

    Tools

    Get Citation

    Copy Citation Text

    Jinbo ZHANG, Liang HU, Qi LI, Jianping CHEN, Guiling WU. Absolute Phase of the Radio Frequency Transfer over Optical Fiber with Phase Self-calibration[J]. Acta Photonica Sinica, 2023, 52(9): 0906001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Mar. 3, 2023

    Accepted: Mar. 24, 2023

    Published Online: Oct. 24, 2023

    The Author Email: HU Liang (liang.hu@sjtu.edu.cn)

    DOI:10.3788/gzxb20235209.0906001

    Topics