Journal of Innovative Optical Health Sciences
Co-Editors-in-Chief
Qingming Luo
2024
Volume: 17 Issue 4
2 Article(s)
Giles Blaney, Angelo Sassaroli, and Sergio Fantini

This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media, particularly for measurements relevant to near-infrared spectroscopy. The three temporal domains, continuous wave, frequency domain, and time domain, each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient. Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change. Therefore, spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains. The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media. These works are experimental and theoretical, presenting one-, two-, and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods, domains, and data types. Following this history, we present a compendium of sensitivity maps organized by temporal domain and then data type. This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document. Methods for one to generate these maps are provided in Appendix A, including the code. This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize, investigate, compare, and generate sensitivity to localized absorption change maps.

Aug. 01, 2024
  • Vol. 17 Issue 4 2430001 (2024)
  • Ulya Farahdina, Tahta Amrillah, Mashuri Mashuri, Vannajan Sanghiran Lee, Agus Rubiyanto, and Nasori Nasori

    Leukemia is one of the ten types of cancer that causes the biggest death in the world. Compared to other types of cancer, leukemia has a low life expectancy, so an early diagnosis of the cancer is necessary. A new strategy has been developed to identify various leukemia biomarkers by making blood cancer biosensors, especially by developing nanomaterial applications so that they can improve the performance of the biosensor. Although many biosensors have been developed, the detection of leukemia by using nanomaterials with electrochemical and optical methods is still less carried out compare to other types of cancer biosensors. Even the acoustic and calorimetric testing methods for the detection of leukemia by utilizing nanomaterials have not yet been carried out. Most of the reviewed works reported the use of gold nanoparticles and electrochemical characterization methods for leukemia detection with the object of study being conventional cancer cells. In order to be used clinically by the community, future research must be carried out with a lot of patient blood objects, develop non-invasive leukemia detection, and be able to detect all types of blood cancer specifically with one biosensor. This can lead to a fast and accurate diagnosis thus allowing for early treatment and easy periodic condition monitoring for various types of leukemia based on its biomarker and future design controlable via internet of things (IoT) so that why would be monitoring real times.

    Aug. 01, 2024
  • Vol. 17 Issue 4 2430003 (2024)
  • Please enter the answer below before you can view the full text.
    Submit