Advanced Photonics Nexus
Co-Editors-in-Chief
Weibiao Chen, Xiao-Cong (Larry) Yuan, Anatoly Zayats
Hua-Ying Liu, Yao Zhang, Xiaoyi Liu, Luyi Sun, Pengfei Fan, Xiaohui Tian, Dong Pan, Mo Yuan, Zhijun Yin, Guilu Long, Shi-Ning Zhu, and Zhenda Xie

Free-space optical communication (FSO) can achieve fast, secure, and license-free communication without physical cables, providing a cost-effective, energy-efficient, and flexible solution when fiber connection is unavailable. To achieve FSO on demand, portable FSO devices are essential for flexible and fast deployment, where the key is achieving compact structure and plug-and-play operation. Here, we develop a miniaturized FSO system and realize 9.16 Gbps FSO in a 1 km link, using commercial single-mode-fiber-coupled optical transceiver modules without optical amplification. Fully automatic four-stage acquisition, pointing, and tracking systems are developed, which control the tracking error within 3 μrad, resulting in an average link loss of 13.7 dB. It is the key for removing optical amplification; hence FSO is achieved with direct use of commercial transceiver modules in a bidirectional way. Each FSO device is within an overall size of 45 cm × 40 cm × 35 cm, and 9.5 kg weight, with power consumption of ∼10 W. The optical link up to 4 km is tested with average loss of 18 dB, limited by the foggy test environment. With better weather conditions and optical amplification, longer FSO can be expected. Such a portable and automatic FSO system will produce massive applications of field-deployable high-speed wireless communication in the future.

Oct. 14, 2023
  • Vol. 2 Issue 6 065001 (2023)
  • Peilong Hong, Yi Liang, Zhigang Chen, and Guoquan Zhang

    Photonic analogs of the moiré superlattices mediated by interlayer electromagnetic coupling are expected to give rise to rich phenomena, such as nontrivial flatband topology. Here, we propose and demonstrate a scheme to tune the flatbands in a bilayer moiré superlattice by employing a band offset. The band offset is changed by fixing the bands of one slab while shifting those of the other slab, which is accomplished by modifying the thickness of the latter slab. Our results show that the band-offset tuning not only makes some flatbands emerge and disappear but also leads to two sets of flatbands that are robustly formed even with the change of band offset over a broad range. These robust flatbands form either at the AA-stack site or at the AB-stack site, and as a result, a single-cell superlattice can support a pair of high-quality localized modes with tunable frequencies. Moreover, we develop a diagrammatic model to provide an intuitive insight into the formation of the robust flatbands. Our work demonstrates a simple yet efficient way to design and control complex moiré flatbands, providing new opportunities to utilize photonic moiré superlattices for advanced light–matter interaction, including lasing and nonlinear harmonic generation.

    Sep. 28, 2023
  • Vol. 2 Issue 6 066001 (2023)
  • Yafei Wang, Yinggang Chen, Shikai Wang, Meng Wang, Lei Zhang, Suya Feng, Fei Yu, Guoping Dong, Lei Wen, Danping Chen, Chunlei Yu, and Lili Hu

    Ultrashort pulses at 920 nm are a highly desired light source in two-photon microscopy for the efficient excitation of green fluorescence protein. Although Nd3 + -doped fibers have been utilized for 920-nm ultrashort pulse generation, the competitive amplified spontaneous emission (ASE) at 1.06 μm remains a significant challenge in improving their performance. Here, we demonstrate a coordination engineering strategy to tailor the properties of Nd3 + -doped silica glass and fiber. By elevating the covalency between Nd3 + and bonded anions via sulfur incorporation, the fiber gain performance at 920 nm is enhanced, and 1.06-μm ASE intensity is suppressed simultaneously. As a result, the continuous-wave laser efficiencies and signal-to-noise ratio at 920 nm by this fiber are significantly enhanced. Importantly, the stable picosecond pulses at 920 nm are produced by a passive mode-locking technique with a fundamental repetition rate up to 207 MHz, which, to the best of our knowledge, is the highest reported repetition rate realized by Nd3 + -doped silica fibers. The presented strategy enriches the capacity of Nd3 + -doped silica fiber in generating 920-nm ultrashort pulses for application in biophotonics, and it also provides a promising way to tune the properties of rare-earth ion-doped silica glasses and fibers toward ultrafast lasers.

    Sep. 28, 2023
  • Vol. 2 Issue 6 066002 (2023)
  • Tyler Westover, Zach Westhoff, Sharisse Poff, Nick Morrill, David Miller, Shiuh-Hua Wood Chiang, Richard Vanfleet, and Robert Davis

    A miniaturized short-wavelength infrared spectrometer for use with diffuse light was created by combining a thin form factor carbon nanotube composite collimator, a linear variable filter, and an InGaAs photodiode array. The resulting spectrometer measures 3 mm × 4 mm × 14 mm and shows a significant improvement in resolution over a spectrometer without the collimator when used with diffuse light. Its small size and high throughput make it ideal for applications such as wearable optical sensing, where light from highly scattering tissue is measured. Plethysmographic measurements on the wrist were demonstrated, showing rapid data collection with diffuse light.

    Oct. 19, 2023
  • Vol. 2 Issue 6 066003 (2023)
  • Xiaolin Yi, Weike Zhao, Chenlei Li, Long Zhang, Yuluan Xiang, Chaoyue Liu, Yaocheng Shi, Liu Liu, and Daoxin Dai

    Dealing with the increase in data workloads and network complexity requires efficient selective manipulation of any channels in hybrid mode-/wavelength-division multiplexing (MDM/WDM) systems. A reconfigurable optical add-drop multiplexer (ROADM) using special modal field redistribution is proposed and demonstrated to enable the selective access of any mode-/wavelength-channels. With the assistance of the subwavelength grating structures, the launched modes are redistributed to be the supermodes localized at different regions of the multimode bus waveguide. Microring resonators are placed at the corresponding side of the bus waveguide to have specific evanescent coupling of the redistributed supermodes, so that any mode-/wavelength-channel can be added/dropped by thermally tuning the resonant wavelength. As an example, a ROADM for the case with three mode-channels is designed with low excess losses of <0.6, 0.7, and 1.3 dB as well as low cross talks of < - 26.3, -28.5, and -39.3 dB for the TE0, TE1, and TE2 modes, respectively, around the central wavelength of 1550 nm. The data transmission of 30 Gbps / channel is also demonstrated successfully. The present ROADM provides a promising route for data switching/routing in hybrid MDM/WDM systems.

    Nov. 09, 2023
  • Vol. 2 Issue 6 066004 (2023)
  • Shengfu Cheng, Xuyu Zhang, Tianting Zhong, Huanhao Li, Haoran Li, Lei Gong, Honglin Liu, and Puxiang Lai

    Transmission matrix (TM) allows light control through complex media, such as multimode fibers (MMFs), gaining great attention in areas, such as biophotonics, over the past decade. Efforts have been taken to retrieve a complex-valued TM directly from intensity measurements with several representative phase-retrieval algorithms, which still see limitations of slow or suboptimum recovery, especially under noisy environments. Here, we propose a modified nonconvex optimization approach. Through numerical evaluations, it shows that the optimum focusing efficiency is approached with less running time or sampling ratio. The comparative tests under different signal-to-noise levels further indicate its improved robustness. Experimentally, the superior focusing performance of our algorithm is collectively validated by single- and multispot focusing; especially with a sampling ratio of 8, it achieves a 93.6% efficiency of the gold-standard holography method. Based on the recovered TM, image transmission through an MMF is realized with high fidelity. Due to parallel operation and GPU acceleration, our nonconvex approach retrieves a 8685 × 1024 TM (sampling ratio is 8) with 42.3 s on average on a regular computer. The proposed method provides optimum efficiency and fast execution for TM retrieval that avoids the need for an external reference beam, which will facilitate applications of deep-tissue optical imaging, manipulation, and treatment.

    Nov. 17, 2023
  • Vol. 2 Issue 6 066005 (2023)
  • Kuo Zhang, Kun Liao, Haohang Cheng, Shuai Feng, and Xiaoyong Hu

    As a successful case of combining deep learning with photonics, the research on optical machine learning has recently undergone rapid development. Among various optical classification frameworks, diffractive networks have been shown to have unique advantages in all-optical reasoning. As an important property of light, the orbital angular momentum (OAM) of light shows orthogonality and mode-infinity, which can enhance the ability of parallel classification in information processing. However, there have been few all-optical diffractive networks under the OAM mode encoding. Here, we report a strategy of OAM-encoded diffractive deep neural network (OAM-encoded D2NN) that encodes the spatial information of objects into the OAM spectrum of the diffracted light to perform all-optical object classification. We demonstrated three different OAM-encoded D2NNs to realize (1) single detector OAM-encoded D2NN for single task classification, (2) single detector OAM-encoded D2NN for multitask classification, and (3) multidetector OAM-encoded D2NN for repeatable multitask classification. We provide a feasible way to improve the performance of all-optical object classification and open up promising research directions for D2NN by proposing OAM-encoded D2NN.

    Nov. 26, 2023
  • Vol. 2 Issue 6 066006 (2023)
  • Zhiwei Huang, Sergey Sergeyev, Qing Wang, Hani Kbashi, Dmitrii Stoliarov, Qianqian Huang, Yuze Dai, Zhijun Yan, and Chengbo Mou

    Breathing solitons, i.e., dynamic dissipative solitons with oscillating pulse shape and energy caused by different mechanisms of spatiotemporal instabilities, have received considerable interest from the aspects of nonlinear science and potential applications. However, by far, the study of breathing solitons is still limited within the time scale of hundreds of cavity round trips, which ignores the slow dynamics. To fill this lacuna, we theoretically investigate a new type of vector dissipative soliton breathing regime and experimentally demonstrate this concept using mode-locked fiber lasers, which arise from the desynchronization of orthogonal states of polarization (SOPs) in the form of complex oscillations of the phase difference between the states. The dynamic evolution of polarization states of the vector breathings solitons takes the form of a trajectory connecting two quasi-equilibrium orthogonal SOPs on the surface of the Poincaré sphere. The dwelling time near each state is on the scale of a tenth of a thousand cavity round trip times that equals the breathing period, which is up to 2 orders of magnitude longer than that for common breathers. The obtained results can reveal concepts in nonlinear science and may unlock approaches to the flexible manipulation of laser waveforms toward various applications in spectroscopy and metrology.

    Nov. 23, 2023
  • Vol. 2 Issue 6 066007 (2023)
  • Raana Sabri, and Hossein Mosallaei

    Space–time metasurfaces are promising candidates for breaking Lorentz reciprocity, which constrains light propagation in numerous practical applications. There is a substantial difference between carrier and modulation frequencies in space–time photonic metasurfaces that leads to negligible spatial pathway variation of light and weak nonreciprocal response. To surmount this obstacle, herein, the design principle of a high-quality-factor space–time gradient metasurface is demonstrated at the near-infrared regime that increases the lifetime of photons and allows for strong power isolation by lifting the adiabaticity of modulation. The all-dielectric metasurface consists of an array of silicon subwavelength gratings (SWGs) that are separated from distributed Bragg reflectors by a silica buffer. The resonant mode with ultrahigh quality-factor exceeding 104 is excited within the SWG, which is characterized as magnetic octupole and features strong field localization. The SWGs are configured as multijunction p–n layers, whose multigate biasing with time-varying waveforms enables modulation of carriers in space and time. The proposed nonreciprocal metasurface is exploited for free-space optical power isolation by virtue of modulation-induced phase shift. It is shown that under time reversal and by interchanging the directions of incident and observation ports, power isolation of ≈35 dB can be maintained between the two ports in free space.

    Dec. 11, 2023
  • Vol. 2 Issue 6 066008 (2023)
  • Yanqi Liu, Keyang Liu, Zhaoyang Li, Yuxin Leng, and Ruxin Li

    After reaching a world record of 10 PW, the peak power development of the titanium-sapphire (Ti:sapphire) PW ultraintense lasers has hit a bottleneck, and it seems to be difficult to continue increasing due to the difficulty of manufacturing larger Ti:sapphire crystals and the limitation of parasitic lasing that can consume stored pump energy. Unlike coherent beam combining, coherent Ti:sapphire tiling is a viable solution for expanding Ti:sapphire crystal sizes, truncating transverse amplified spontaneous emission, suppressing parasitic lasing, and, importantly, not requiring complex space-time tiling control. A theoretical analysis of the above features and an experimental demonstration of high-quality laser amplification are reported. The results show that the addition of a 2 × 2 tiled Ti:sapphire amplifier to today’s 10 PW ultraintense laser is a viable technique to break the 10 PW limit and directly increase the highest peak power recorded by a factor of 4, further approaching the exawatt class.

    Dec. 23, 2023
  • Vol. 2 Issue 6 066009 (2023)
  • Please enter the answer below before you can view the full text.
    9+5=
    Submit