Advanced Photonics Nexus
Co-Editors-in-Chief
Weibiao Chen, Xiao-Cong (Larry) Yuan, Anatoly Zayats

The development of this technique sets the stage for the realization of high-repetition-rate and fully coherent free-electron lasers, which have vast applications in multidimensional coherent spectroscopy. It also offers new possibilities for FEL schemes requiring high-power laser systems. The image on the cover provides a visual rendering of harmonic self-modulation.

Jiawei Yan, and Gianluca Geloni

X-ray beams carrying orbital angular momentum (OAM) are an emerging tool for probing matter. Optical elements, such as spiral phase plates and zone plates, have been widely used to generate OAM light. However, due to the high impinging intensities, these optics are challenging to use at X-ray free-electron lasers (XFELs). Here, we propose a self-seeded free-electron laser (FEL) method to produce intense X-ray vortices. Unlike passive filtering after amplification, an optical element will be used to introduce the helical phase to the radiation pulse in the linear regime, significantly reducing thermal load on the optical element. The generated OAM pulse is then used as a seed and significantly amplified. Theoretical analysis and numerical simulations demonstrate that the power of the OAM seed pulse can be amplified by more than two orders of magnitude, reaching peak powers of several tens of gigawatts. The proposed method paves the way for high-power and high-repetition-rate OAM pulses of XFEL light.

Mar. 30, 2023
  • Vol. 2 Issue 3 036001 (2023)
  • Yize Liang, Chengkun Cai, Kangrui Wang, Xiaokang Lian, Jue Wang, Jinfeng Liu, Lei Shen, and Jian Wang

    Recently, transmitting diverse signals in different cores of a multicore fiber (MCF) has greatly improved the communication capacity of a single fiber. In such an MCF-based communication system, mux/demux devices with broad bandwidth are of great significance. In this work, we design and fabricate a 19-channel mux/demux device based on femtosecond laser direct writing. The fabricated mux/demux device possesses an average insertion loss of 0.88 dB and intercore crosstalk of no more than - 29.1 dB. Moreover, the fabricated mux/demux device features a broad bandwidth across the C+L band. Such a mux/demux device enables low-loss 19-core fiber (de)multiplexing over the whole C+L band, showing a convincing potential value in wavelength-space division multiplexing applications. In addition, a 19-core fiber fan-in/fan-out system is also established based on a pair of mux/demux devices in this work.

    Apr. 12, 2023
  • Vol. 2 Issue 3 036002 (2023)
  • Saisai Wang, Pengfei Shao, Ting Zhi, Zhujun Gao, Wenhao Chen, Lin Hao, Qing Cai, Jin Wang, Junjun Xue, Bin Liu, Dunjun Chen, Lianhui Wang, and Rong Zhang

    The AlGaN/GaN p–n junction has received extensive attention due to its capability of rapid photogenerated carrier separation in photodetection devices. The AlGaN/GaN heterojunction nanowires (NWs) have been especially endowed with new life for distinctive transport characteristics in the photoelectrochemical (PEC) detection field. A self-powered PEC ultraviolet photodetector (PEC UV PD) based on the p-AlGaN/n-GaN heterojunction NW is reported in this work. The n-GaN NW layer plays a crucial role as a current flow hub to regulate carrier transport, which mainly acts as a light absorber under 365 nm and carrier recombination layer under 255 nm illumination, which can effectively modulate photoresponsivity at different wavelengths. Furthermore, by designing the thicknesses of the NW layer, the photocurrent polarity reversal was successfully achieved in the constructed AlGaN/GaN NW PEC UV PD at two different light wavelengths. In addition, by combining with platinum decoration, the photoresponse performance could be further enhanced. Our work provides insight into transport mechanisms in the AlGaN/GaN NW PEC system, and offers a feasible and comprehensive strategy for further exploration of multifunctional optoelectronic devices.

    Apr. 17, 2023
  • Vol. 2 Issue 3 036003 (2023)
  • Hanxiang Yang, Jiawei Yan, and Haixiao Deng

    The spectroscopic methods for the ultrafast electronic and structural dynamics of materials require fully coherent extreme ultraviolet and soft X-ray radiation with high-average brightness. Seeded free-electron lasers (FELs) are ideal sources for delivering fully coherent soft X-ray pulses. However, due to state-of-the-art laser system limitations, it is challenging to meet the ultraviolet seed laser’s requirements of sufficient energy modulation and high repetition rates simultaneously. The self-modulation scheme has been proposed and recently demonstrated in a seeded FEL to relax the seed laser requirements. Using numerical simulations, we show that the required seed laser intensity in the self-modulation is ~3 orders of magnitude lower than that in the standard high-gain harmonic generation (HGHG). The harmonic self-modulation can launch a single-stage HGHG FEL lasing at the 30th harmonic of the seed laser. Moreover, the proof-of-principle experimental results confirm that the harmonic self-modulation can still amplify the laser-induced energy modulation. These achievements reveal that the self-modulation can not only remarkably reduce the requirements of the seed laser but also improve the harmonic upconversion efficiency, which paves the way for realizing high-repetition-rate and fully coherent soft X-ray FELs.

    Apr. 18, 2023
  • Vol. 2 Issue 3 036004 (2023)
  • Yujia Li, Dongmei Huang, Yihuan Shi, Chao Wang, and Feng Li

    The statistical dynamics of partially incoherent ultrafast lasers are complex and chaotic, which is significant for fundamental research and practical applications. We experimentally and theoretically reveal the statistical dynamics of the spectral evolutions and correlations in an incoherent noise-like rectangle pulse laser (NLRPL). Based on statistical histogram analysis, the probability distribution asymmetry of the spectral intensity fluctuation is decayed with the wavelength far away from the spectral peak due to the detection noise. The full-spectral correlation values indicate that the spectral similarity between two round trips is exponentially weakened as the round-trip offset increases. By studying the correlation map of spectral components, we find that the area of the high-correlation region is relevant to the pump power, which is reduced by increasing the pump power. The mutual information of the spectra demonstrates that two spectral components with symmetry about the spectral peak have a statistical dependence. Experimental observations and statistical properties can coincide well with theoretical numerical simulations. We reveal the pump-dependent spectral correlation of the NLRPL and provide multiple statistical methods for the characterizations of chaotic dynamics in incoherent light sources.

    Apr. 19, 2023
  • Vol. 2 Issue 3 036005 (2023)
  • Nicolas Barré, Ravi Shivaraman, Simon Moser, Patrick Salter, Michael Schmidt, Martin J. Booth, and Alexander Jesacher

    Light plays a central role in many applications. The key to unlocking its versatility lies in shaping it into the most appropriate form for the task at hand. Specifically tailored refractive index modifications, directly manufactured inside glass using a short pulsed laser, enable an almost arbitrary control of the light flow. However, the stringent requirements for quantitative knowledge of these modifications, as well as for fabrication precision, have so far prevented the fabrication of light-efficient aperiodic photonic volume elements (APVEs). Here, we present a powerful approach to the design and manufacturing of light-efficient APVEs. We optimize application-specific three-dimensional arrangements of hundreds of thousands of microscopic voxels and manufacture them using femtosecond direct laser writing inside millimeter-sized glass volumes. We experimentally achieve unprecedented diffraction efficiencies up to 80%, which is enabled by precise voxel characterization and adaptive optics during fabrication. We demonstrate APVEs with various functionalities, including a spatial mode converter and combined intensity shaping and wavelength multiplexing. Our elements can be freely designed and are efficient, compact, and robust. Our approach is not limited to borosilicate glass but is potentially extendable to other substrates, including birefringent and nonlinear materials, giving a preview of even broader functionalities, including polarization modulation and dynamic elements.

    Apr. 20, 2023
  • Vol. 2 Issue 3 036006 (2023)
  • Dunzhao Wei, Pengcheng Chen, Yipeng Zhang, Wenzhe Yao, Rui Ni, Xiaopeng Hu, Xinjie Lv, Shining Zhu, Min Xiao, and Yong Zhang

    Laguerre-Gaussian (LG) modes, carrying the orbital angular momentum of light, are critical for important applications, such as high-capacity optical communications, superresolution imaging, and multidimensional quantum entanglement. Advanced developments in these applications demand reliable and tunable LG mode laser sources, which, however, do not yet exist. Here, we experimentally demonstrate highly efficient, highly pure, broadly tunable, and topological-charge-controllable LG modes from a Janus optical parametric oscillator (OPO). The Janus OPO featuring a two-faced cavity mode is designed to guarantee an efficient evolution from a Gaussian-shaped fundamental pump mode to a desired LG parametric mode. The output LG mode has a tunable wavelength between 1.5 and 1.6 μm with a conversion efficiency >15 % , a controllable topological charge up to 4, and a mode purity as high as 97%, which provides a high-performance solid-state light source for high-end demands in multidimensional multiplexing/demultiplexing, control of spin-orbital coupling between light and atoms, and so on.

    Apr. 21, 2023
  • Vol. 2 Issue 3 036007 (2023)
  • Yizhou Tan, and Ying Gu

    A phase-only method is proposed to transform an optical vortex field into desired spiral diffraction–interference patterns. Double-ring phase apertures are designed to produce a concentric high-order vortex beam and a zeroth-order vortex beam, and the diffracted intensity ratio of two beams is adjustable between 0 and 1. The coherent superposition of the two diffracted beams generates a brighter Airy spot (or Poisson spot) in the middle of the spiral pattern, where the singularity for typical vortex beam is located. Experiments employing circular, triangular, and rectangular phase apertures with topological charges from 3 to 16 demonstrate a stable, compact, and flexible apparatus for vortex beam conversion. By adjusting the parameters of the phase aperture, the proposed method can realize the optical Gaussian tweezer function and the optical vortex tweezer function simultaneously along the same axis or switch the experimental setup between the two functions. It also has potential applications in light communication through turbulent air by transmitting an orbital angular momentum-coded signal with a concentric beacon laser.

    Apr. 24, 2023
  • Vol. 2 Issue 3 036008 (2023)
  • Feng Han, Tingkui Mu, Haoyang Li, and Abudusalamu Tuniyazi

    Compressive full-Stokes spectropolarimetric imaging (SPI), integrating passive polarization modulator (PM) into general imaging spectrometer, is powerful enough to capture high-dimensional information via incomplete measurement; a reconstruction algorithm is needed to recover 3D data cube (x, y, and λ) for each Stokes parameter. However, existing PMs usually consist of complex elements and enslave to accurate polarization calibration, current algorithms suffer from poor imaging quality and are subject to noise perturbation. In this work, we present a single multiple-order retarder followed a polarizer to implement passive spectropolarimetric modulation. After building a unified forward imaging model for SPI, we propose a deep image prior plus sparsity prior algorithm for high-quality reconstruction. The method based on untrained network does not need training data or accurate polarization calibration and can simultaneously reconstruct the 3D data cube and achieve self-calibration. Furthermore, we integrate the simplest PM into our miniature snapshot imaging spectrometer to form a single-shot SPI prototype. Both simulations and experiments verify the feasibility and outperformance of our SPI scheme. It provides a paradigm that allows general spectral imaging systems to become passive full-Stokes SPI systems by integrating the simplest PM without changing their intrinsic mechanism.

    May. 11, 2023
  • Vol. 2 Issue 3 036009 (2023)
  • Shijie Feng, Yile Xiao, Wei Yin, Yan Hu, Yixuan Li, Chao Zuo, and Qian Chen

    In recent years, there has been tremendous progress in the development of deep-learning-based approaches for optical metrology, which introduce various deep neural networks (DNNs) for many optical metrology tasks, such as fringe analysis, phase unwrapping, and digital image correlation. However, since different DNN models have their own strengths and limitations, it is difficult for a single DNN to make reliable predictions under all possible scenarios. In this work, we introduce ensemble learning into optical metrology, which combines the predictions of multiple DNNs to significantly enhance the accuracy and reduce the generalization error for the task of fringe-pattern analysis. First, several state-of-the-art base models of different architectures are selected. A K-fold average ensemble strategy is developed to train each base model multiple times with different data and calculate the mean prediction within each base model. Next, an adaptive ensemble strategy is presented to further combine the base models by building an extra DNN to fuse the features extracted from these mean predictions in an adaptive and fully automatic way. Experimental results demonstrate that ensemble learning could attain superior performance over state-of-the-art solutions, including both classic and conventional single-DNN-based methods. Our work suggests that by resorting to collective wisdom, ensemble learning offers a simple and effective solution for overcoming generalization challenges and boosts the performance of data-driven optical metrology methods.

    May. 17, 2023
  • Vol. 2 Issue 3 036010 (2023)
  • Yahui Wang, Xinxin Hu, Lintao Niu, Hui Liu, Jianzhong Zhang, and Mingjiang Zhang

    We propose and experimentally demonstrate a long-range chaotic Brillouin optical correlation domain analysis by employing an optimized time-gated scheme and differential denoising configuration, where the number of effective resolving points largely increases to more than one million. The deterioration of the chaotic Brillouin gain spectrum (BGS) and limitation of sensing range owing to the intrinsic noise structure, resulting from the time delay signature (TDS) and nonzero background of chaotic laser, is theoretically analyzed. The optimized time-gated scheme with a higher extinction ratio is used to eliminate the TDS-induced impact. The signal-to-background ratio of the measured BGS is enhanced by the differential denoising scheme to furthest remove the accumulated nonzero noise floor along the fiber, and the pure chaotic BGS is ulteriorly obtained by the Lorentz fit. Ultimately, distributed strain sensing along a 27.54-km fiber with a 2.69-cm spatial resolution is experimentally demonstrated, and the number of effective resolving points is more than 1,020,000.

    May. 18, 2023
  • Vol. 2 Issue 3 036011 (2023)
  • Quentin A. A. Tanguy, Arnab Manna, Saswata Mukherjee, David Sharp, Elyas Bayati, Yueyang Chen, Karl F. Böhringer, and Arka Majumdar

    The combination of photonic integrated circuits and free-space metaoptics has the ability to untie technological knots that require advanced light manipulation due to their conjoined ability to achieve strong light–matter interaction via wave-guiding light over a long distance and shape them via large space-bandwidth product. Rapid prototyping of such a compound system requires component interchangeability. This represents a functional challenge in terms of fabrication and alignment of high-performance optical systems. Here, we report a flexible and interchangeable interface between a photonic integrated circuit and the free space using an array of low-loss metaoptics and demonstrate multifunctional beam shaping at a wavelength of 780 nm. We show that robust and high-fidelity operation of the designed optical functions can be achieved without prior precise characterization of the free-space input nor stringent alignment between the photonic integrated chip and the metaoptics chip. A diffraction limited spot of ∼3 μm for a hyperboloid metalens of numerical aperture 0.15 is achieved despite an input Gaussian elliptical deformation of up to 35% and misalignments of the components of up to 20 μm. A holographic image with a peak signal-to-noise ratio of >10 dB is also reported.

    May. 23, 2023
  • Vol. 2 Issue 3 036012 (2023)
  • Nian Zhang, Baoxing Xiong, Xiang Zhang, and Xiao Yuan

    Optical orbital angular momentum (OAM) multiplexed holography has been implemented as an effective method for information encryption and storage. Multiramp helicoconical-OAM multiplexed holography is proposed and experimentally implemented. The mode selectivity of the multiramp mixed screw-edge dislocations, constant parameter K, and normalized factor are investigated, respectively, which demonstrates that those parameters can be used as additional coding degrees of freedom for holographic multiplexing. The combination of the topological charge and the other three parameters can provide a four-dimensional multiplexed holography and can enhance information capacity.

    Jun. 05, 2023
  • Vol. 2 Issue 3 036013 (2023)
  • Li Pei, Zeya Xi, Bing Bai, Jianshuai Wang, Jingjing Zheng, Jing Li, and Tigang Ning

    The photonic neural processing unit (PNPU) demonstrates ultrahigh inference speed with low energy consumption, and it has become a promising hardware artificial intelligence (AI) accelerator. However, the nonidealities of the photonic device and the peripheral circuit make the practical application much more complex. Rather than optimizing the photonic device, the architecture, and the algorithm individually, a joint device-architecture-algorithm codesign method is proposed to improve the accuracy, efficiency and robustness of the PNPU. First, a full-flow simulator for the PNPU is developed from the back end simulator to the high-level training framework; Second, the full system architecture and the complete photonic chip design enable the simulator to closely model the real system; Third, the nonidealities of the photonic chip are evaluated for the PNPU design. The average test accuracy exceeds 98%, and the computing power exceeds 100TOPS.

    Jun. 09, 2023
  • Vol. 2 Issue 3 036014 (2023)
  • Yize Liang, Hongya Wang, Xi Zhang, Jianzhou Ai, Zelin Ma, Siddharth Ramachandran, and Jian Wang

    Recently, structured light beams have attracted substantial attention in many applications, including optical communications, imaging, optical tweezers, and quantum optics. We propose and experimentally demonstrate a reconfigurable structured light beam generator in order to generate diverse structured light beams with adjustable beam types, beam orders, and beam sizes. By controlling the sizes of generated free-space structured light beams, free-space orbital angular momentum (OAM) beams and vector beams are coupled into an air–core fiber. To verify that our structured light generator enables generating structured light with high beam quality, polarization distributions and mode purity of generated OAM beams and vector beams in both free space and air–core fiber are characterized. Such a structured light generator may pave the way for future applications based on higher-order structured light beams.

    Jun. 12, 2023
  • Vol. 2 Issue 3 036015 (2023)
  • Please enter the answer below before you can view the full text.
    7+6=
    Submit