Optoelectronics Letters, Volume. 20, Issue 1, 48(2024)

A deep learning based fine-grained classification algo-rithm for grading of visual impairment in cataract pa-tients

Jiewei JIANG1, Yi ZHANG1、*, He XIE2, Jingshi YANG1, Jiamin GONG1, and Zhongwen and LI3
Author Affiliations
  • 1School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
  • 2School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
  • 3Ningbo Eye Hospital, Wenzhou Medical University, Ningbo 315000, China
  • show less

    [1] [1] FLAXMAN S R, BOURNE R R, RESNIKOFF S, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis[J]. The lancet global health, 2017, 5(12): e1221-e1234.

    [2] [2] LAM D, RAO S K, RATRA V, et al. Cataract[J]. Nature reviews disease primers, 2015, 1(1): 1-15.

    [3] [3] DAY A C, FINDL O. Femtosecond laser-assisted vs conventional cataract surgery[J]. The lancet, 2020, 395(10219): 170-171.

    [4] [4] HE Y, ZHANG R, ZHANG C, et al. Clinical outcome of phacoemulsification combined with intraocular lens implantation for primary angle closure/glaucoma (PAC/PACG) with cataract[J]. American journal of translational research, 2021, 13(12): 13498.

    [5] [5] SCHWEITZER C, BREZIN A, COCHENER B, et al. Femtosecond laser-assisted versus phacoemulsification cataract surgery (FEMCAT): a multicentre participant- masked randomised superiority and cost-effectiveness trial[J]. The lancet, 2020, 395(10219): 212-224.

    [6] [6] World Health Organization. World report on vision[R]. Geneva: WHO, 2019.

    [7] [7] RESNIKOFF S, FELCH W, GAUTHIER T M, et al. The number of ophthalmologists in practice and training worldwide: a growing gap despite more than 200 000 practitioners[J]. British journal of ophthalmology, 2012, 96(6): 783-787.

    [8] [8] SHEN D, WU G, SUK H I. Deep learning in medical image analysis[J]. Annual review of biomedical engineering, 2017, 19: 221.

    [9] [9] KHOJASTE-SARAKHSI M, HAGHIGHI S S, GHOMI S F, et al. Deep learning for Alzheimer's disease diagnosis: a survey[J]. Artificial intelligence in medicine, 2022: 102332.

    [10] [10] CHEN S, QIU C, YANG W, et al. Combining edge guidance and feature pyramid for medical image segmentation[J]. Biomedical signal processing and control, 2022, 78: 103960.

    [11] [11] LOTTER W, DIAB A R, HASLAM B, et al. Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach[J]. Nature medicine, 2021, 27(2):244-249.

    [12] [12] GRZYBOWSKI A, BRONA P, LIM G, et al. Artificial intelligence for diabetic retinopathy screening: a review[J]. Eye, 2020, 34(3): 451-460.

    [13] [13] YU K H, BEAM A L, KOHANE I S. Artificial intelligence in healthcare[J]. Nature biomedical engineering, 2018, 2(10): 719-731.

    [14] [14] SENGUPTA S, SINGH A, LEOPOLD H A, et al. Ophthalmic diagnosis using deep learning with fundus images-a critical review[J]. Artificial intelligence in medicine, 2020, 102: 101758.

    [15] [15] LI Z, JIANG J, CHEN K, et al. Preventing corneal blindness caused by keratitis using artificial intelligence[J]. Nature communications, 2021, 12(1):1-12.

    [16] [16] LI Z, QIANG W, CHEN H, et al. Artificial intelligence to detect malignant eyelid tumors from photographic images[J]. NPJ digital medicine, 2022, 5(1): 1-9.

    [17] [17] ZHANG H, NIU K, XIONG Y, et al. Automatic cataract grading methods based on deep learning[J]. Computer methods and programs in biomedicine, 2019, 182: 104978.

    [18] [18] JUNAYED M S, ISLAM M B, SADEGHZADEH A, et al. CataractNet: an automated cataract detection system using deep learning for fundus images[J]. IEEE access, 2021, 9: 128799-128808.

    [19] [19] XU X, ZHANG L, LI J, et al. A hybrid global-local representation CNN model for automatic cataract grading[J]. IEEE journal of biomedical and health informatics, 2020, 24(2): 556-567.

    [20] [20] BLOICE M D, ROTH P M, HOLZINGER A. Biomedical image augmentation using augmentor[J].Bioinformatics, 2019, 35(21): 4522-4524.

    [21] [21] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, USA. New York: IEEE, 2017: 4700-4708.

    [22] [22] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, September8-14, 2018, Munich, Germany. Berlin: Springer, 2018, 11211: 3-19.

    [23] [23] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, USA. New York: IEEE, 2017: 1800-1807.

    [24] [24] JIANG J, WANG L, FU H, et al. Automatic classification of heterogeneous slit-illumination images using an ensemble of cost-sensitive convolutional neural networks[J]. Annals of translational medicine, 2021, 9(7): 550.


    Get Citation

    Copy Citation Text

    JIANG Jiewei, ZHANG Yi, XIE He, YANG Jingshi, GONG Jiamin, and LI Zhongwen. A deep learning based fine-grained classification algo-rithm for grading of visual impairment in cataract pa-tients[J]. Optoelectronics Letters, 2024, 20(1): 48

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 20, 2023

    Accepted: Jul. 12, 2023

    Published Online: May. 15, 2024

    The Author Email: Yi ZHANG (zhangyi03110214@163.com)