Journal of the Chinese Ceramic Society, Volume. 53, Issue 5, 1389(2025)

Research Progress on the Adhesion Mechanisms between Organic Adhesives and Cement-Based Materials

XIE Zonglin1...2, ZHONG Fuwen1,2, XIANG Gongkun1,2, WANG Mao3, JIA Guiliang4, and YUAN Qiang12 |Show fewer author(s)
Author Affiliations
  • 1School of Civil Engineering, Central South University, Changsha 410075, China
  • 2National Engineering Research Center of High-speed Railway Construction Technology, Changsha 410075, China
  • 3China Railway Jinan Bureau Group Co., Ltd
  • 4China Railway Shanghai Group Co., Ltd., Shanghai, 200071, China
  • show less
    References(74)

    [6] [6] AL-BAYATI G, AL-MAHAIDI R, KALFAT R. Torsional strengthening of reinforced concrete beams using different configurations of NSM FRP with epoxy resins and cement-based adhesives[J]. Compos Struct, 2017, 168: 569-581.

    [7] [7] WANG W Z, ZHAO W Q, ZHANG J J, et al. Epoxy-based grouting materials with super-low viscosities and improved toughness[J]. Constr Build Mater, 2021, 267: 121104.

    [8] [8] LI C, BAI J R, JIANG Y, et al. Investigating the seepage control and plugging capabilities of polyurethane-cement composites: A comprehensive study on material properties[J]. Constr Build Mater, 2024, 416: 135191.

    [10] [10] AHMED O, VAN GEMERT D, VANDEWALLE L. Improved model for plate-end shear of CFRP strengthened RC beams[J]. Cem Concr Compos, 2001, 23(1): 3-19.

    [11] [11] JIANG F X, YANG Q R, WANG Y T, et al. Insights on the adhesive properties and debonding mechanism of CFRP/concrete interface under sulfate environment: From experiments to molecular dynamics[J]. Constr Build Mater, 2021, 269: 121247.

    [12] [12] AHRENS A, BONDE A, SUN H W, et al. Catalytic disconnection of C-O bonds in epoxy resins and composites[J]. Nature, 2023, 617(7962): 730-737.

    [13] [13] ZHU Y Q, ROMAIN C, WILLIAMS C K. Sustainable polymers from renewable resources[J]. Nature, 2016, 540(7633): 354-362.

    [14] [14] XUE K L, WU Q, ZHANG P B, et al. Equol-based epoxy resin as an ideal substitute for the diglycidyl ether of bisphenol A (DGEBA)[J]. Polym Degrad Stab, 2024, 227: 110856.

    [15] [15] YUAN Q, WANG Z, YAO H, et al. Comparative study of reactive diluents with different molecular structures on the curing properties of epoxy adhesives and the interface bonding properties with mortar[J]. Int J Adhes Adhes, 2023, 126: 103473.

    [18] [18] HUANG Y Z, TIAN Y Z, LI Y Y, et al. High mechanical properties of epoxy networks with dangling chains and tunable microphase separation structure[J]. RSC Adv, 2017, 7(77): 49074-49082.

    [19] [19] HUANG H, PANG H, HUANG J H, et al. Influence of hard segment content and soft segment length on the microphase structure and mechanical performance of polyurethane-based polymer concrete[J]. Constr Build Mater, 2021, 284: 122388.

    [20] [20] CHENG B X, GAO W C, REN X M, et al. A review of microphase separation of polyurethane: Characterization and applications[J]. Polym Test, 2022, 107: 107489.

    [30] [30] YUAN Q, ZHONG F W, ZHANG K, et al. Laboratory simulation on airborne chloride transport behaviors in cracked mortar under drying-wetting conditions[J]. J Build Eng, 2024, 89: 109318.

    [36] [36] VAN LIJSEBETTEN F, MAIHEU T, WINNE J M, et al. Epoxy adhesives with reversible hardeners: Controllable thermal debonding in bulk and at interfaces[J]. Adv Mater, 2023, 35(31): e2300802.

    [37] [37] WESTERMAN C R, MCGILL B C, WILKER J J. Sustainably sourced components to generate high-strength adhesives[J]. Nature, 2023, 621(7978): 306-311.

    [39] [39] TATAR J, BRENKUS N R, SUBHASH G, et al. Characterization of adhesive interphase between epoxy and cement pasteviaRaman spectroscopy and mercury intrusion porosimetry[J]. Cem Concr Compos, 2018, 88: 187-199.

    [40] [40] TATAR J, TAYLOR C R, HAMILTON H R. A multiscale micromechanical model of adhesive interphase between cement paste and epoxy supported by nanomechanical evidence[J]. Compos Part B Eng, 2019, 172: 679-689.

    [41] [41] TATAR J, HAMILTON H R. Comparison of laboratory and field environmental conditioning on FRP-concrete bond durability[J]. Constr Build Mater, 2016, 122: 525-536.

    [42] [42] AWAJA F, GILBERT M, KELLY G, et al. Adhesion of polymers[J]. Prog Polym Sci, 2009, 34(9): 948-968.

    [43] [43] HAGITA K, MURASHIMA T, MIYATA T, et al. Model based on the river meander curve for simulating the adhesion of cross-linked polymers to rough surfaces[J]. Macromolecules, 2024, 57(8): 3862-3872.

    [44] [44] SADOWSKI , AK A, HOA J. Multi-sensor evaluation of the concrete within the interlayer bond with regard to pull-off adhesion[J]. Arch Civ Mech Eng, 2018, 18(2): 573-582.

    [45] [45] ZHANG S H, LI Q Y, YUAN Q, et al. Effect of roughness on bonding performance between Portland cement concrete and magnesium phosphate cement concrete[J]. Constr Build Mater, 2022, 323: 126585.

    [46] [46] ILANGO N K, GUJAR P, NAGESH A K, et al. Interfacial adhesion mechanism between organic polymer coating and hydrating cement paste[J]. Cem Concr Compos, 2021, 115: 103856.

    [50] [50] WEI H Y, XIA J, ZHOU W L, et al. Adhesion and cohesion of epoxy-based industrial composite coatings[J]. Compos Part B Eng, 2020, 193: 108035.

    [51] [51] PLETINCX S, FOCKAERT L L I, MOL J M C, et al. Probing the formation and degradation of chemical interactions from model molecule/metal oxide to buried polymer/metal oxide interfaces[J]. NPJ Mater Degrad, 2019, 3: 23.

    [52] [52] PANG B, ZHANG Y S, LIU G J, et al. Interface properties of nanosilica-modified waterborne epoxy cement repairing system[J]. ACS Appl Mater Interfaces, 2018, 10(25): 21696-21711.

    [53] [53] MIYATA T, SATO Y K, KAWAGOE Y, et al. Effect of inorganic material surface chemistry on structures and fracture behaviours of epoxy resin[J]. Nat Commun, 2024, 15(1): 1898.

    [54] [54] DJOUANI F, CONNAN C, DELAMAR M, et al. Cement paste-epoxy adhesive interactions[J]. Constr Build Mater, 2011, 25(2): 411-423.

    [55] [55] DJOUANI F, CHEHIMI M M, BENZARTI K. Interactions of fully formulated epoxy with model cement hydrates[J]. J Adhes Sci Technol, 2013, 27(5/6): 469-489.

    [56] [56] ZHENG H P, PANG B, JIN Z Q, et al. Durability enhancement of cement-based repair mortars through waterborne polyurethane modification: Experimental characterization and molecular dynamics simulations[J]. Constr Build Mater, 2024, 438: 137204.

    [57] [57] FU H, WANG P G, ZHENG H P, et al. Bionic repair protective coatings with high toughness and bond strength based on anionic waterborne polyurethane-modified cement[J]. Constr Build Mater, 2024, 444: 137861.

    [58] [58] HOSSEINI E, ZAKERTABRIZI M, HABIBNEJAD KORAYEM A, et al. Orbital overlapping through induction bonding overcomes the intrinsic delamination of 3D-printed cementitious binders[J]. ACS Nano, 2020, 14(8): 9466-9477.

    [59] [59] DU J P, BU Y H, SHEN Z H. Interfacial properties and nanostructural characteristics of epoxy resin in cement matrix[J]. Constr Build Mater, 2018, 164: 103-112.

    [60] [60] PICARD L, PHALIP P, FLEURY E, et al. Chemical adhesion of silicone elastomers on primed metal surfaces: A comprehensive survey of open and patent literatures[J]. Prog Org Coat, 2015, 80: 120-141.

    [61] [61] QIN R Y, SCHREIBER H P. Adhesion at partially restructured polymer surfaces[J]. Colloids Surf A Physicochem Eng Aspects, 1999, 156(1-3): 85-93.

    [62] [62] DUAN S C, CUI J X, HU J Y, et al. Research on the adhesion mechanism and compatibility of acrylate composite polyurethane binder−aggregate based on surface free energy theory[J]. Constr Build Mater, 2024, 438: 137236.

    [63] [63] DROUT R J, KATO S, CHEN H Y, et al. Isothermal titration calorimetry to explore the parameter space of organophosphorus agrochemical adsorption in MOFs[J]. J Am Chem Soc, 2020, 142(28): 12357-12366.

    [64] [64] PAUL B K. Classicalvs. nonclassical hydrophobic interactions underlying various interaction processes: Application of isothermal titration calorimetry[J]. Chem Phys Impact, 2022, 5: 100104.

    [65] [65] THENG B K G. Clay-polymer interactions: Summary and perspectives[J]. Clays Clay Miner, 1982, 30(1): 1-10.

    [66] [66] JANI P K, FARIAS B V, JAIN R K, et al. Isothermal titration calorimetry reveals entropy-driven bisphenol A epoxy resin adhesion to metal oxide surfaces[J]. Macromolecules, 2024, 57(5): 2130-2141.

    [67] [67] ZHOU A, BYKZTRK O, LAU D. Debonding of concrete-epoxy interface under the coupled effect of moisture and sustained load[J]. Cem Concr Compos, 2017, 80: 287-297.

    [68] [68] LUO Q, LI Y Y, ZHANG Z, et al. Influence of substrate moisture on the interfacial bonding between calcium silicate hydrate and epoxy[J]. Constr Build Mater, 2022, 320: 126252.

    [69] [69] YU Z C, ZHOU A, NING W Y, et al. Molecular insights into the weakening effect of water on cement/epoxy interface[J]. Appl Surf Sci, 2021, 553: 149493.

    [70] [70] GUJAR P, HIRSHIKESH H, ANNABATTULA R K, GHOSH P. Structural to interfacial fracture transition in epoxy coated hydrating cement[J]. Constr Build Mater, 2021, 310: 125128.

    [71] [71] ZHOU A, QIN R Y, CHOW C L, et al. Structural performance of FRP confined seawater concrete columns under chloride environment[J]. Compos Struct, 2019, 216: 12-19.

    [73] [73] WANG P, DUAN Y Y, ZHENG H P, et al. Molecular structure and dynamics of water on the surface of cement hydration products: Wetting behavior at nanoscale[J]. Appl Surf Sci, 2023, 611: 155713.

    [74] [74] HOU D S, YANG Q R, WANG P, et al. Unraveling disadhesion mechanism of epoxy/CSH interface under aggressive conditions[J]. Cem Concr Res, 2021, 146: 106489.

    [75] [75] WANG P, YANG Q R, WANG M H, et al. Theoretical investigation of epoxy detachment from C-S-H interface under aggressive environment[J]. Constr Build Mater, 2020, 264: 120232.

    [76] [76] YAPHARY Y L, YU Z C, LAM R H W, et al. Molecular dynamics simulations on adhesion of epoxy-silica interface in salt environment[J]. Compos Part B Eng, 2017, 131: 165-172.

    [77] [77] BAHRAQ A A, OBOT I B, AL-OSTA M A, et al. Molecular-level investigation on the effect of surface moisture on the bonding behavior of cement-epoxy interface[J]. J Build Eng, 2022, 61: 105299.

    [78] [78] BAHRAQ A A, AL-OSTA M A, BAGHABRA AL-AMOUDI O S, et al. A nanoscale adhesion mechanism of cement-epoxy interface under varying moisture conditions: A molecular dynamics study[J]. Surf Interfaces, 2022, 35: 102446.

    [79] [79] TAM L H, ZHOU A, WU C. Nanomechanical behavior of carbon fiber/epoxy interface in hygrothermal conditioning: A molecular dynamics study[J]. Mater Today Commun, 2019, 19: 495-505.

    [81] [81] WANG H C, FENG P, LV Y D, et al. A comparative study on UV degradation of organic coatings for concrete: Structure, adhesion, and protection performance[J]. Prog Org Coat, 2020, 149: 105892.

    [84] [84] SMA I, NALDI S, AYAD M, et al. Laser shock adhesion testing of thermally aged epoxy coatings[J]. Prog Org Coat, 2024, 195: 108603.

    [87] [87] FAYSAL R M, BHUIYAN M M H, AL MOMIN K, et al. A review on the advances of the study on FRP-Concrete bond under hygrothermal exposure[J]. Constr Build Mater, 2023, 363: 129818.

    [88] [88] XU Y Q, YUAN Q, DE SCHUTTER G, et al. Detecting the damage of concrete subjected to fatigue load coupled with freeze-thaw cycles using alternating current electric impedance spectroscopy[J]. Cem Concr Compos, 2023, 142: 105224.

    [89] [89] WANG B, WU X H, SUN Z Y, et al. Experimental investigation on low-velocity impact behavior of CFRP wraps in presence of concrete substrate[J]. Constr Build Mater, 2021, 301: 124103.

    [90] [90] MESHGIN P, CHOI K K, REDA TAHA M M. Experimental and analytical investigations of creep of epoxy adhesive at the concrete-FRP interfaces[J]. Int J Adhes Adhes, 2009, 29(1): 56-66.

    [91] [91] CHOI K K, MESHGIN P, REDA TAHA M M. Shear creep of epoxy at the concrete-FRP interfaces[J]. Compos Part B Eng, 2007, 38(5/6): 772-780.

    [92] [92] DAI Y Q, LAN Y, WEN R J, et al. Doubling the coating-substrate pull-off strength by growth of CaCO3 nano-crystals[J]. Chem Eng J, 2023, 474: 145763.

    [93] [93] MI X Q, LIANG N, XU H F, et al. Toughness and its mechanisms in epoxy resins[J]. Prog Mater Sci, 2022, 130: 100977.

    [95] [95] XIA Y G, GU W C, ZHANG Q, et al. Enhancing resistance to corrosion and fouling using epoxy coatings with superhydrophobic cells[J]. Adv Funct Mater, 2025, 35(2): 2412379.

    [96] [96] WU Y C, WANG T L, FAY J D B, et al. Silane effects on adhesion enhancement of 2K polyurethane adhesives[J]. Langmuir, 2023, 39(51): 19016-19026.

    [97] [97] YUAN Q, XIE Z L, TIAN Y, et al. The driving force of water absorption in cementitious materials: An analysis of surface-free energies and pore structure[J]. J Mater Res Technol, 2024, 30: 4714-4724.

    [98] [98] LIANG Y C, ZHANG X H, WEI X H, et al. Contribution of surface roughness and oxygen-containing groups to the interfacial shear strength of carbon fiber/epoxy resin composites[J]. New Carbon Mater, 2023, 38(6): 1116-1126.

    [99] [99] BNOV L, ZAHORANOV A, KOVIK D, et al. Atmospheric pressure plasma treatment of flat aluminum surface[J]. Appl Surf Sci, 2015, 331: 79-86.

    [100] [100] ZHOU A, YU Z C, WEI H N, et al. Understanding the toughening mechanism of silane coupling agents in the interfacial bonding in steel fiber-reinforced cementitious composites[J]. ACS Appl Mater Interfaces, 2020, 12(39): 44163-44171.

    [101] [101] CHOI S, MAUL S, STEWART A, et al. Effect of silane coupling agent on the durability of epoxy adhesion for structural strengthening applications[J]. Polym Eng Sci, 2013, 53(2): 283-294.

    [102] [102] STEWART A, SCHLOSSER B, DOUGLAS E P. Surface modification of cured cement pastes by silane coupling agents[J]. ACS Appl Mater Interfaces, 2013, 5(4): 1218-1225.

    [103] [103] DAI B W, LIU Q, JIN F, et al. Adhesion behaviors and kinetics at silicone foam/metal interfaces[J]. Polym Degrad Stab, 2024, 225: 110772.

    [104] [104] SONG X, ZHOU C, LIU L, et al. Hyperbranched bio-based waterborne sizing coating for enhancing the wettability of carbon fibre and interfacial adhesion of fibre/epoxy composites[J]. Polymer, 2024, 315: 127852.

    [105] [105] PANG B, QIAN J J, ZHANG Y S, et al. 5S multifunctional intelligent coating with superdurable, superhydrophobic, self-monitoring, self-heating, and self-healing properties for existing construction application[J]. ACS Appl Mater Interfaces, 2019, 11(32): 29242-29254.

    [106] [106] BAHRAQ A A, AL-OSTA M A, OBOT I B, et al. Improving the adhesion properties of cement/epoxy interface using graphene-based nanomaterials: Insights from molecular dynamics simulation[J]. Cem Concr Compos, 2022, 134: 104801.

    [107] [107] CHENG B H, YU J H, ARISAWA T, et al. Ultrastrong underwater adhesion on diverse substrates using non-canonical phenolic groups[J]. Nat Commun, 2022, 13(1): 1892.

    Tools

    Get Citation

    Copy Citation Text

    XIE Zonglin, ZHONG Fuwen, XIANG Gongkun, WANG Mao, JIA Guiliang, YUAN Qiang. Research Progress on the Adhesion Mechanisms between Organic Adhesives and Cement-Based Materials[J]. Journal of the Chinese Ceramic Society, 2025, 53(5): 1389

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 15, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240800

    Topics