Optoelectronics Letters, Volume. 20, Issue 1, 28(2024)
Improvement of maximum power point tracking in pho-tovoltaic arrays in different environments using hybrid algorithms
[1] [1] BHUKYA L, NANDIRAJU S. A novel photovoltaic maximum power point tracking technique based on grasshopper optimized fuzzy logic approach[J]. Interna-tional journal of hydrogen energy, 2020, 45(16): 9416-9427.
[2] [2] CHEN S, LIU X, NIELSEN C, et al. Improved air qual-ity in China can enhance solar-power performance and accelerate carbon-neutrality targets[J]. One earth, 2022, 5(5): 550-562.
[3] [3] MOTAHHIR S, El HAMMOUMI A, EI GHZIZAL A. The most used MPPT algorithms: review and the suit-able low-cost embedded board for each algorithm[J]. Journal of cleaner production, 2020, 246: 118983.
[4] [4] HUYNH D C, DUNNIGAN M W. Development and comparison of an improved incremental conductance algorithm for tracking the MPP of a solar PV panel[J]. IEEE transactions on sustainable energy, 2016, 7(4): 1421-1429.
[5] [5] FAN L S. Application in photovoltaic MPPT based on improved hysteresis loop comparison method[J]. Jour-nal of physics, 2021, 2113: 1742-6588.
[6] [6] MAO M, CUI L, ZHANG Q, et al. Classification and summarization of solar photovoltaic MPPT techniques: a review based on traditional and intelligent control strategies[J]. Energy reports, 2020, 6: 1312-1327.
[7] [7] BIRANE M, LARBES C, CHEKNANE A. Compara-tive study and performance evaluation of central and distributed topologies of photovoltaic system[J]. Inter-national journal of hydrogen energy, 2017, 42(13): 8703-8711.
[8] [8] DONG L K G. Optimal design of photovoltaic MPPT disturbance step length in a rapidly changing environ-ment[J]. Journal of physics, 2021, 1: 1742-6596.
[9] [9] VITORINO M A, HARTMANN L V, LIMA M N. An intelligent control strategy of fractional short circuit current maximum power point tracking technique for photovoltaic applications[J]. Journal of renewable and sustainable energy, 2015, 7(1): 15.
[10] [10] AHMED B. A hybrid MPPT technique for solar photo-voltaic system under partial shading[J]. Engineering proceedings, 2021, 12(1): 28.
[11] [11] IM Y C, KWAK S S, PARK J, et al. Intermittent FOCV using an I-V curve tracer for minimizing energy loss[J]. Sciences-Basel, 2021, 11(19): 9006.
[12] [12] HUANG P C, KUO T H. A 100-pA adaptive-FOCV MPPT circuit with >99.6% tracking efficiency for indoor light energy harvesting[C]//15th IEEE Asian Solid-State Circuits Conference (A-SSCC), November 4-6, 2019, Macau, China. New York: IEEE, 2019: 185-188.
[13] [13] JATELY V, AZZOPARDI B, JOSHI J, et al. Experi-mental analysis of hill-climbing MPPT algorithms un-der low irradiance levels[J]. Renewable and sustainable energy reviews, 2021, 150: 111467.
[14] [14] ALQAISIA Z, MAHMOUD Y. Comprehensive study of partially shaded PV modules with overlapping di-odes[J]. IEEE access, 2019, 7: 172665-172675.
[15] [15] ABOUADANE H, FAKKAR A, SERA D, et al. Multi-ple-power-sample based P&O MPPT for fast-changing irradiance conditions for a simple implementation[J]. IEEE journal of photovoltaics, 2020, 10(5): 1481-1488.
[16] [16] OWUSU-NYARKO I, ELGENEDY M A, ABDEL-SALAM I, et al. Modified variable step-size incre-mental conductance MPPT technique for photovoltaic systems[J]. Electronics, 2021, 10(19): 2331.
[17] [17] SHEHU M M, DONG M, HU J S. Optimization of particle swarm based MPPT under partial shading con-ditions in photovoltaic systems[C]//16th IEEE Confer-ence on Industrial Electronics and Applications (ICIEA), August 1-4, 2021, Chengdu, China. New York: IEEE, 2021: 267-272.
[18] [18] WU Z, YU D. Application of improved bat algorithm for solar PV maximum power point tracking under par-tially shaded condition[J]. Applied soft computing, 2018, 62: 101-109.
[19] [19] REZK H, FATHY A, ALY M. A robust photovoltaic array reconfiguration strategy based on coyote optimi-zation algorithm for enhancing the extracted power under partial shadow condition[J]. Energy reports, 2021, 7: 109-124.
[20] [20] ELTAMALY A M. An improved cuckoo search algo-rithm for maximum power point tracking of photo-voltaic systems under partial shading conditions[J]. En-ergies, 2021, 14(4): 953.
[21] [21] IBRAHIM M N, REZK H, AL-DHAIFALLAH M, et al. Solar array fed synchronous reluctance motor driven water pump: an improved performance under partial shading conditions[J]. IEEE access, 2016, 7: 77100-77115.
[22] [22] RAMYAR A, IMAN-EINI H, FARHANGI S. Global maximum power point tracking method for photovoltaic arrays under partial shading conditions[J]. IEEE trans-actions on industrial electronics, 2017, 64(4): 2855-2864.
[23] [23] TEUSCHL Y, TABORSKY B, TABORSKY M. How do cuckoos find their hosts? The role of habitat imprint-ing[J]. Animal behaviour, 1998, 56(6): 1425-1433.
[24] [24] REYNLDS A M, FRYE M A. Free-flight odor tracking in drosophila is consistent with an optimal intermittent scale-free search[J]. Plos one, 2007, 2(4).
[25] [25] AHMED J, SALAM Z. A maximum power point track-ing (MPPT) for PV system using cuckoo search with partial shading capability[J]. Applied energy, 2014, 119(15): 118-130.
[26] [26] YANG X S, DEB S. Cuckoo search: state-of-the-art and opportunities[C]//4th IEEE International Conference on Soft Computing & Machine Intelligence (ISCMI), No-vember 23-24, 2017, Mauritius. New York: IEEE, 2017:55-59.
Get Citation
Copy Citation Text
ZHANG Jiuchao, REN Guangjun, XUE Yuming, XIA Dan, WANG Jiangchao, and HU Zhaoshuo. Improvement of maximum power point tracking in pho-tovoltaic arrays in different environments using hybrid algorithms[J]. Optoelectronics Letters, 2024, 20(1): 28
Received: Oct. 10, 2022
Accepted: Nov. 18, 2023
Published Online: May. 15, 2024
The Author Email: Yuming XUE (orwellx@tjut.edu.cn)