Chinese Optics Letters, Volume. 19, Issue 10, 102202(2021)

Overview of refractive index sensors comprising photonic crystal fibers based on the surface plasmon resonance effect [Invited] On the Cover

Chao Liu1、*, Jingwei Lü1, Wei Liu1, Famei Wang1, and Paul K. Chu2
Author Affiliations
  • 1School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing 163318, China
  • 2Department of Physics, Department of Materials Science & Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
  • show less
    References(158)

    [1] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824(2003).

    [2] D. Gong, Y. Yuan, L. Liang, M. Yang. Theoretical study on negative permittivity of the material producing sharp surface plasmon resonance dips. Chin. Opt. Lett., 17, 042801(2019).

    [3] J. Homola. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev., 108, 462(2008).

    [4] B. Lee, S. Roh, J. Park. Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol., 15, 209(2009).

    [5] S. Weng, L. Pei, J. Wang, T. Ning, J. Li. High sensitivity side-hole fiber magnetic field sensor based on surface plasmon resonance. Chin. Opt. Lett., 14, 110603(2016).

    [6] J. W. Chung, S. D. Kim, R. Bernhardt, J. C. Pyun. Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sens. Actuators B Chem., 111–112, 416(2005).

    [7] C. Liu, J. W. Wang, X. Jin, F. M. Wang, L. Yang, J. W. Lv, G. L. Fu, X. L. Li, Q. Liu, T. Sun, P. K. Chu. Near-infrared surface plasmon resonance sensor based on photonic crystal fiber with big open rings. Optik, 207, 164466(2020).

    [8] R. C. Jorgenson, S. S. Yee. A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B Chem., 12, 213(1993).

    [9] R. W. Wood. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proceedings of the Physical Society of London, 269(1902).

    [10] A. Otto. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift fur Physik, 216, 398(1968).

    [11] E. Kretschmann, H. Raether. Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift fur Naturforschung A, 23, 2135(1968).

    [12] T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, Q. Bao. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun., 10, 28(2019).

    [13] X. Wang, J. Zhu, Y. Xu, Y. Qi, L. Zhang, H. Yang, Z. Yi. A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure. Chin. Phys. B, 30, 024207(2021).

    [14] X. Wang, Y. Wu, X. Wen, J. Zhu, X. Bai, Y. Qi, H. Yang. Surface plasmons and SERS application of Au nanodisk array and Au thin film composite structure. Opt. Quantum Electron., 52, 238(2020).

    [15] E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, A. François. Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends. Sensors, 17, 12(2017).

    [16] Q. Li, Q. Wang, X. Yang, K. Wang, H. Zhang, W. Nie. High sensitivity surface plasmon resonance biosensor for detection of microRNA and small molecule based on graphene oxide-gold nanoparticles composites. Talanta, 174, 521(2017).

    [17] B. D. Gupta, A. M. Shrivastav, S. P. Usha. Surface plasmon resonance-based fiber optic sensors utilizing molecular imprinting. Sensors, 16, 1381(2016).

    [18] C. Caucheteur, T. Guo, F. Liu, B. Guan, J. Albert. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat. Commun., 7, 13371(2016).

    [19] C. Caucheteur, T. Guo, J. Albert. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem., 407, 3883(2015).

    [20] J. Lu, T. van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, J. Lammertyn. Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients. Biosens. Bioelectron., 79, 173(2016).

    [21] A. G. Brolo. Plasmonics for future biosensors. Nat. Photon., 6, 709(2012).

    [22] C. Liu, G. L. Fu, F. M. Wang, Z. Yi, C. H. Xu, L. Yang, Q. Liu, W. Liu, X. L. Li, H. W. Mu, T. Sun, P. K. Chu. Ex-centric core photonic crystal fiber sensor with gold nanowires based on surface plasmon resonance. Optik, 196, 163173(2019).

    [23] Y. Zhang, Z. Yi, X. Wang, P. Chu, W. Yao, Z. Zhou, S. Cheng, Z. Liu, P. Wu, M. Pan, Y. Yi. Dual band visible metamaterial absorbers based on four identical ring patches. Physica E: Low-dimensional Syst. Nanostruct., 127, 114526(2021).

    [24] T. Guo. Fiber grating assisted surface plasmon resonance for biochemical and electrochemical sensing. J. Lightwave Technol., 35, 3323(2017).

    [25] X. Wang, H. Deng, L. Yuan. Highly sensitive flexible SPR sensor based on side-polishing helical-core fiber: theoretical analysis and experimental demonstration. Adv. Photon. Res., 2, 2000054(2021).

    [26] J. Ji, L. Yuan. Transmission enhanced SPR resonance nano-microscope. Opt. Express, 28, 22297(2020).

    [27] Y. Li, H. Ma, L. Gan, Q. Liu, Z. Yan, D. Liu, Q. Sun. Immobilized optical fiber microprobe for selective and high sensitive glucose detection. Sens. Actuators B Chem., 255, 3004(2018).

    [28] Z. Zhang, J. He, B. Du, K. Guo, Y. Wang. Highly sensitive gas refractive index sensor based on hollow-core photonic bandgap fiber. Opt. Express, 27, 29649(2019).

    [29] Z. Bai, M. Li, Y. Wang, J. Tang, Z. Zhang, S. Liu, C. Fu, Y. Zhang, J. He, Y. Wang, C. Liao. Orbital angular momentum generator based on hollow-core photonic bandgap fiber grating. Appl. Phys. Express, 12, 072004(2019).

    [30] C. Fu, S. Liu, Y. Wang, Z. Bai, J. He, C. Liao, Y. Zhang, F. Zhang, B. Yu, S. Gao, Z. Li, Y. Wang. High-order orbital angular momentum mode generator based on twisted photonic crystal fiber. Opt. Lett., 43, 1786(2018).

    [31] P. Russell. Applied physics: photonic crystal fibers. Science, 299, 358(2003).

    [32] J. Han, E. Liu, J. Liu. Circular gradient-diameter photonic crystal fiber with large mode area and low bending loss. J. Opt. Soc. Am. A, 36, 533(2019).

    [33] Z. Huo, E. Liu, J. Liu. Hollow-core photonic quasicrystal fiber with high birefringence and ultra-low nonlinearity. Chin. Opt. Lett., 18, 030603(2020).

    [34] S. A. S. Hashemi, M. Noorim. Dispersion tailoring of photonic crystal fibers for flat-top, coherent, and broadband supercontinuum generation. Phys. Scrip., 95, 075501(2020).

    [35] T. V. Andersen, K. M. Hilligsøe, C. K. Nielsen, J. Thøgersen, K. P. Hansen, S. R. Keiding, J. J. Larsen. Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths: erratum. Opt. Express, 13, 3581(2005).

    [36] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135(2006).

    [37] A. Hassani, M. Skorobogatiy. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express, 14, 11616(2006).

    [38] J. Luo, S. Chen, H. Qu, Z. Su, L. Li, F. Tian. Highly birefringent single-mode suspended-core fiber in terahertz regime. J. Lightwave Technol., 36, 3242(2018).

    [39] J. Wang, C. Liu, F. Wang, W. Su, L. Yang, J. Lv, G. Fu, X. Li, Q. Liu, T. Sun, P. K. Chu. Surface plasmon resonance sensor based on coupling effects of dual photonic crystal fibers for low refractive indexes detection. Results Phys., 18, 103240(2020).

    [40] X. Yang, Y. Lu, M. Wang, J. Yao. An exposed-core grapefruit fibers based surface plasmon resonance sensor. Sensors, 15, 17106(2015).

    [41] C. Liu, J. W. Wang, F. M. Wang, W. Q. Su, L. Yang, J. W. Lv, G. L. Fu, X. L. Li, Q. Liu, T. Sun, P. K. Chu. Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt. Commun., 464, 125496(2020).

    [42] A. A. Rifat, G. A. Mahdiraji, D. M. Chow, G. S. Yu, R. Ahmed, F. R. M. Adikan. Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors, 15, 11499(2015).

    [43] G. An, S. Li, W. Qin, W. Zhang, Z. Fan, Y. Bao. High-sensitivity refractive index sensor based on D-shaped photonic crystal fiber with rectangular lattice and nanoscale gold film. Plasmonics, 9, 1355(2014).

    [44] Y. Zhao, Z. Deng, J. Li. Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem., 202, 557(2014).

    [45] D. J. J. Hu, H. P. Ho. Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv. Opt. Photon., 9, 257(2017).

    [46] B. D. Gupta, R. K. Verma. Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J. Sens., 2009, 979761(2009).

    [47] A. Guerreiro, D. F. Santos, J. M. Baptista. New trends in the simulation of nanosplasmonic optical D-type fiber sensors. Sensors, 19, 1772(2019).

    [48] A. K. Sharma, A. K. Pandey, B. Kaur. A review of advancements (2007–2017) in plasmonics-based optical fiber sensors. Opt. Fiber Technol., 43, 20(2018).

    [49] H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings(1988).

    [50] N. Luan, R. Wang, W. Lv, J. Yao. Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt. Express, 23, 8576(2015).

    [51] D. Gao, C. Y. Guan, Y. W. Wen, X. Zhong, L. B. Yuan. Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun., 313, 94(2014).

    [52] A. Hassani, M. Skorobogatiy. Design criteria for microstructured-optical-fiber based surface-plasmon-resonance sensors. J. Opt. Soc. Am. B, 24, 1423(2007).

    [53] F. Hao, P. Nordlander. Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chem. Phys. Lett., 446, 115(2007).

    [54] A. Vial, T. Laroche. Comparison of gold and silver dispersion laws suitable for FDTD simulations. Appl. Phys. B, 93, 139(2008).

    [55] W. Qin, S. Li, J. Xue, X. Xin, L. Zhang. Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications. Chin. Phys. B, 22, 074213(2013).

    [56] A. K. Mishra, S. K. Mishra, B. D. Gupta. SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt. Commun., 344, 86(2015).

    [57] A. Hassani, M. Skorobogatiy. Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. J. Opt. Soc. Am. B, 26, 1550(2009).

    [58] F. Wang, C. Liu, Z. Sun, T. Sun, B. Liu, P. K. Chu. A highly sensitive SPR sensors based on two parallel PCFs for low refractive index detection. IEEE Photon. J., 10, 7104010(2018).

    [59] T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, B. Storaci. Refractive index of silica aerogel: uniformity and dispersion law. Nucl. Instrum. Methods Phys. Res. A, 595, 183(2008).

    [60] X. Chen, L. Xia, C. Li. Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection. IEEE Photon. J., 10, 6800709(2018).

    [61] A. L. Leal, M.C. Estevez, S. O. M. Chapa, L. M. Lechug. Design of a surface plasmon resonance immunoassay for therapeutic drug monitoring of amikacin. Talanta, 141, 253(2015).

    [62] C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, P. K. Chu. Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection. Plasmonics, 13, 779(2018).

    [63] C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, P. K. Chu. Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express, 25, 14227(2017).

    [64] E. Haque, M. A. Hossain, T. Pham, Y. Namihira, N. H. Hai, F. Ahmed. Surface plasmonic resonance sensor for wider range of low refractive index detection. The 26th International Conference on Telecommunications(2019).

    [65] W. Zeng, Q. Wang, L. Xu. Plasmonic refractive index sensor based on D-shaped photonic crystal fiber for wider range of refractive index detection. Optik, 223, 165463(2020).

    [66] E. Haque, M. A. Hossain, Y. Namihira, F. Ahmed. Microchannel-based plasmonic refractive index sensor for low refractive index detection. Appl. Opt., 58, 1547(2019).

    [67] B. Liu, Y. Jiang, X. Zhu, X. Tang, Y. Shi. Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index. Opt. Express, 21, 32349(2013).

    [68] S. Chu, K. Nakkeeran, A. M. Abobaker, S. S. Aphale, P. R. Babu, K. Senthilnathan. Design and analysis of surface-plasmon-resonance-based photonic quasi-crystal fiber biosensor for high-refractive-index liquid analytes. IEEE J. Sel. Top. Quantum Electron., 25, 6900309(2019).

    [69] S. Chu, K. Nakkeeran, A. M. Abobaker, S. S. Aphale, S. Sivabalan, P. R. Babu, K. Senthilnathan. A surface plasmon resonance bio-sensor based on dual core D-shaped photonic crystal fibre embedded with silver nanowires for multi-sensing. IEEE Sens. J., 21, 76(2020).

    [70] K. Tong, F. C. Wang, M. T. Wang, P. Dang, Y. X Wang, J. R. Sun. D-Shaped photonic crystal fiber biosensor based on silver-graphene. Optik, 168, 467(2018).

    [71] F. D. Apuzzo, A. R. Piacenti, F. Giorgianni, M. Autore, M. C. Guidi, A. Marcelli, U. Schade, Y. Ito, M. Chen, S. Lupi. Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene. Nat. Commun., 8, 14885(2017).

    [72] A. A. Rifat, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan. Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sens. J., 17, 2776(2017).

    [73] M. De, V. K. Singh. Analysis of a highly sensitive flat fiber plasmonic refractive index sensor. Appl. Opt., 59, 380(2020).

    [74] M. S. A. Gandhi, K. Senthilnathan, P. R. Babu, Q. Li. Highly sensitive localized surface plasmon polariton based D-type twin-hole photonic crystal fiber microbiosensor: enhanced scheme for SERS reinforcement. Sensors, 20, 5248(2020).

    [75] G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, Z. Han. Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance. Plasmonics, 12, 465(2017).

    [76] E. Haque, M. A. Hossain, F. Ahmed, Y. Namihira. Surface plasmon resonance sensor based on modified D-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sens. J., 18, 8287(2018).

    [77] G. An, X. Hao, S. Li, X. Yan, X. Zhang. D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl. Opt., 56, 6988(2017).

    [78] J. N. D. R. Jha. On the performance of graphene-based D shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics, 10, 1123(2015).

    [79] U. Lu, Y. Li, Y. Han, Y. Liu, J. Gao. D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating. Appl. Opt., 57, 5268(2018).

    [80] G. An, S. Li, H. Wang, X. Zhang. Metal oxide-graphene-based quasi-D-shaped optical fiber plasmonic biosensor. IEEE Photon. J., 9, 6803909(2017).

    [81] J. Liu, H. Liang, B. Liu, X. He, Z.-P. Chen. Abnormal sensing properties of surface plasmon resonance sensor based on photonic crystal fibers. Opt. Fiber Technol., 48, 248(2019).

    [82] F. Haider, R. A. Aoni, R. Ahmed, A. E. Miroshnichenko. Highly amplitude-sensitive photonic crystal-fiber-based plasmonic sensor. J. Opt. Soc. Am. B, 35, 2816(2018).

    [83] Q. Liu, J. Sun, Y. Sun, W. Liu, F. Wang, L. Yang, C. Liu, Q. Liu, Q. Li, Z. Ren, T. Sun, P. K. Chu. Surface plasmon resonance sensor based on eccentric core photonic quasi-crystal fiber with indium tin oxide. Appl. Opt., 58, 6848(2019).

    [84] A. K. Paul, A. K. Sarkar, A. B. S. Rahman, A. Khaleque. Twin core photonic crystal fiber plasmonic refractive index sensor. IEEE Sens. J., 18, 5761(2018).

    [85] D. Ristau, H. Ehlers. Thin Film Optical Coating in Springer Handbook of Lasers and Optics(2012).

    [86] R. Otupiri, E. K. Akowuah, S. Haxha. Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications. Opt. Express, 23, 15716(2015).

    [87] D. Li, W. Zhang, H. Liu, J. Hu, G. Zhou. High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength. IEEE Photon. J., 9, 6801608(2017).

    [88] C. Liu, W. Su, F. Wang, X. Li, Q. Liu, H. Mu, T. Sun, P. K Chu, B. Liu. Birefringent PCF-based SPR sensor for a broad range of low refractive index detection. IEEE Photon. Tech. Lett, 30, 1471(2018).

    [89] C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, P. K. Chu. Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Express, 26, 9039(2018).

    [90] Z. Yang, L. Xia, C. Li, X. Chen, D. Liu. A surface plasmon resonance sensor based on concave-shaped photonic crystal fiber for low refractive index detection. Opt. Commun., 430, 195(2019).

    [91] G. Wang, Y. Lu, L. Duan, J. Yao. A refractive index sensor based on PCF with ultra-wide detection range. IEEE J. Sel. Top. Quantum Electron, 27, 5600108(2020).

    [92] M. R. Islam, M. M. I. Khan, F. Mehjabin, J. A. Chowdhury, M. Islam. Design of a fabrication friendly and highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor. Results Phys., 19, 103501(2020).

    [93] A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, F. R. M. Adikan. Copper-graphene based photonic crystal fiber plasmonic biosensor. IEEE Photon. J., 8, 4800408(2016).

    [94] A. A. Rifat, M. R. Hasan, R. Ahmed, H. Butt. Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J. Nanophoton., 12, 012503(2017).

    [95] A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, A. E. Miroshnichenko. Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt. Lett., 43, 891(2018).

    [96] X. C. Yang, Y. Lu, M. T. Wang, J. Q. Yao. SPR sensor based on exposed-core grapefruit fiber with bimetallic structure. IEEE Photon. Tech. Lett, 28, 649(2016).

    [97] P. B. Bing, S. C. Huang, J. L. Sui, H. Wang, Z. Y. Wang. Analysis and improvement of a dual-core photonic crystal fiber sensor. Sensors, 18, 2051(2018).

    [98] M. R. Momota, M. R. Hasan. Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt. Mater., 76, 287(2018).

    [99] Q. Liu, J. Sun, Y. Sun, W. Liu, J. Lv, C. Liu, X. Li, Z. Ren, F. Wang, W. Lu, Y. Jiang, T. Sun, P. K. Chu. High-sensitivity SPR sensor based on the eightfold eccentric core PQF with locally coated indium tin oxide. Appl. Opt., 59, 6484(2020).

    [100] M. De, C. Markides, V. K. Singh, C. Themistos, B. M. A. Rahman. Analysis of a single solid core flat fiber plasmonic refractive index sensor. Plasmonics, 15, 1429(2020).

    [101] Y. Lu, X. Yang, M. Wang, J. Yao. Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires. Electron. Lett., 51, 1675(2015).

    [102] M. A. Mahfuz, M. A. Hossain, E. Haque, N. H. Hai, Y. Namihira, F. Ahmed. Dual-core photonic crystal fiber-based plasmonic RI sensor in the visible to near-IR operating band. IEEE Sens. J., 20, 7692(2020).

    [103] M. Liu, X. Yang, B. Zhao, J. Hou, P. Shum. Square array photonic crystal fiber-based surface plasmon resonance refractive index sensor. Mod. Phys. Lett. B, 31, 1750352(2017).

    [104] W. Liu, F. Wang, C. Liu, L. Yang, Q. Liu, W. Su, J. Lv, S. An, X. Li, T. Sun, P. K. Chu. A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding. Results Opt., 1, 100004(2020).

    [105] J. N. Dash, R. Jha. Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR. Plasmonics, 11, 1505(2016).

    [106] N. Chen, M. Chang, X. Zhang, J. Zhou, X. Lu, S. Zhuang. Highly sensitive plasmonic sensor based on a dual-side polished photonic crystal fiber for component content sensing applications. Nanomaterials, 9, 1587(2019).

    [107] H. Han, D. Hou, N. Luan, Z. Bai, L. Song, J. Liu, Y. Hu. Surface plasmon resonance sensor based on dual-side polished microstructured optical fiber with dual-core. Sensors, 20, 3911(2020).

    [108] T. Li, L. Zhu, X. Yang, X. Lou, L. Yu. A refractive index sensor based on H-shaped photonic crystal fibers coated with Ag-graphene layers. Sensors, 20, 741(2020).

    [109] O. Salihoglu, S. Balci, C. Kocabas. Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl. Phys. Lett., 100, 213110(2012).

    [110] J. S. Bunch, A. M. V. Zanda, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, P. L. McEuen. Electromechanical resonators from graphene sheets. Science, 315, 490(2007).

    [111] H. Han, D. Hou, L. Zhao, N. Luan, L. Song, Z. Liu, Y. Lian, J. Liu, Y. Hu. A large detection-range plasmonic sensor based on an H-shaped photonic crystal fiber. Sensors, 20, 1009(2020).

    [112] C. Li, B. Yan, J. Liu. Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance. J. Opt. Soc. Am. A, 36, 1663(2019).

    [113] A. K. Paul, M. S. Habib, N. H. Hai, S. M. A. Razzak. An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing. Opt. Commun., 464, 125556(2020).

    [114] A. K. Paul. Design and analysis of photonic crystal fiber plasmonic refractive index sensor for condition monitoring of transformer oil. OSA Continuum, 3, 2253(2020).

    [115] H. Abdullah, K. Ahmed, S. A. Mitu. Ultrahigh sensitivity refractive index biosensor based on gold coated nano-film photonic crystal fiber. Results Phys., 17, 103151(2020).

    [116] S. Singh, Y. K. Prajapati. TiO2/gold-graphene hybrid solid core SPR based PCF RI sensor for sensitivity enhancement. Optik, 224, 165525(2020).

    [117] P. Bing, J. Sui, G. Wu, X. Guo, Z. Li, L. Tan, J. Yao. Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors. Plasmonics, 15, 1071(2020).

    [118] F. Haider, R. A. Aoni, R. Ahmed, G. A. Mahdiraji, M. F. Azman, F. R. M. Adikan. Mode-multiplex plasmonic sensor for multi-analyte detection. Opt. Lett., 45, 3945(2020).

    [119] X. Meng, J. Li, Y. Guo, S. Li, Y. Wang, W. Bi, H. Lu. An optical-fiber sensor with double loss peaks based on surface plasmon resonance. Optik, 216, 164938(2020).

    [120] S. Hossain, M. R. I. Sheikh, T. Ahmed, I. Mahmud. Design of a surface plasmon resonance based gold coated photonic crystal fiber biosensor. The 4th International Conference on Electrical Information and Communication Technology(2019).

    [121] T. Wu, Y. Shao, Y. Wang, S. Cao, W. Cao, F. Zhang, C. Liao, J. He, Y. Huang, M. Hou, Y. Wang. Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt. Express, 25, 20313(2017).

    [122] M. A. Mahfuz, M. A. Hossain, E. Haque, N. H. Hai, Y. Namihira, F. Ahmed. A bimetallic-coated, low propagation loss, photonic crystal fiber based plasmonic refractive index sensor. Sensors, 19, 3794(2019).

    [123] G. Melwin, K. Senthilnathan. High sensitive D-shaped photonic crystal fiber sensor with V-groove analyte channel. Optik, 213, 164779(2020).

    [124] E. Haque, S. Mahmuda, M. A. Hossain, N. H. Hai, Y. Namihira, F. Ahmed. Highly sensitive dual-core PCF based plasmonic refractive index sensor for low refractive index detection. IEEE Photon. J., 11, 7905309(2019).

    [125] Z. Liu, H. Tam. Fabrication and sensing applications of special microstructured optical fibers. Selected Topics on Optical Fiber Technologies and Applications(2018).

    [126] P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, J. V. Badding. Microstructured optical fibers as high-pressure microfluidic reactors. Science, 311, 1583(2006).

    [127] A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, W. Fritzsche. Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers. Small, 6, 2584(2010).

    [128] L. Jiang, C. Yuan, Z. Li, J. Su, Z. Yi, W. Yao, P. Wu, Z. Liu, S. Cheng, M. Pan. Multi-band and high-sensitivity perfect absorber based on monolayer graphene metamaterial. Diam. Relat. Mater., 111, 108227(2021).

    [129] Z. Yi, J. Li, J. Lin, F. Qin, X. Chen, W. Yao, Z. Liu, S. Cheng, P. Wu, H. Li. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array. Nanoscale, 12, 23077(2020).

    [130] P. Chu, J. Chen, Z. Xiong, Z. Yi. Controllable frequency conversion in the coupled time-modulated cavities with phase delay. Opt. Commun., 476, 126338(2020).

    [131] X. Zhang, X. Zhu, Y. Shi. Fiber optic surface plasmon resonance sensor based on silver-coated large-core suspended-core fiber. Opt. Lett., 44, 4550(2019).

    [132] B. Doherty, A. Csaki, M. Thiele, M. Zeisberger, A. Schwuchow, J. Kobelke, W. Fritzsche, M. A. Schmidt. Nanoparticle functionalised small-core suspended-core fibre - a novel platform for efficient sensing. Biomed. Opt. Express, 8, 790(2017).

    [133] K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, W. Fritzsche. Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications. IEEE Sens. J., 12, 218(2012).

    [134] H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, P. S. J. Russell. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt. Express, 19, 12180(2011).

    [135] M. J. Weber. Handbook of Optical Materials(2002).

    [136] N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, P. S. J. Russell. High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices. J. Non-Crystal Solids, 356, 1829(2010).

    [137] H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, P. S. J. Russell. Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl. Phys. Lett., 93, 111102(2008).

    [138] M. Schmidt, L. Prill Sempere, H. Tyagi, C. Poulton, P. Russell. Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires. Phys. Rev. B, 77, 033417(2008).

    [139] M. A. Schmidt, N. Granzow, N. Da, M. Y. Peng, L. Wondraczek, P. S. J. Russell. All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers. Opt. Lett., 34, 1946(2009).

    [140] H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, P. S. Russell. Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Opt. Express, 16, 17227(2008).

    [141] A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, S. C. Fleming. Drawn metamaterials with plasmonic response at terahertz frequencies. Appl. Phys. Lett., 96, 191101(2010).

    [142] C. Markos, I. Kubat, O. Bang. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms. Sci. Rep., 4, 6057(2014).

    [143] B. Li, T. Cheng, J. Chen, X. Yan. Graphene-enhanced surface plasmon resonance liquid refractive index sensor based on photonic crystal fiber. Sensors, 19, 3666(2019).

    [144] V. Portosi, D. Laneve, M. C. Falconi, F. Prudenzano. Advances on photonic crystal fiber sensors and application. Sensors, 19, 1892(2019).

    [145] B. Wang, Q. Wang. Sensitivity-enhanced optical fiber biosensor based on coupling effect between SPR and LSPR. IEEE Sens. J., 18, 8303(2018).

    [146] Y. Wang, Q. Huang, W. Zhu, M. Yang, E. Lewis. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMF film. Opt. Express, 26, 1910(2018).

    [147] X. Dong, H. Du, X. Sun, Z. Luo, J. Duan. A novel strain sensor with large measurement range based on all fiber Mach–Zehnder interferometer. Sensors, 18, 1549(2018).

    [148] J. N. Dash, N. Negi, R. Jha. Graphene oxide coated PCF interferometer for enhanced strain sensitivity. J. Lightwave Technol., 35, 5385(2017).

    [149] Y. Zhao, D. Wu, R. Q. Lv. Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid. IEEE Photon. Tech. Lett, 27, 26(2015).

    [150] L. Liu, Z. Liu, Y. Zhang, S. Liu. V-shaped micro-structure optical fiber surface plasmon resonance sensor for the simultaneous measurement of the refractive index and temperature. Opt. Lett., 44, 5093(2019).

    [151] E. Klantsataya, A. Franois, H. E. Heidepriem, P. Hoffmann, T. M. Monro. Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing. Sensors, 15, 25090(2015).

    [152] Q. Xie, Y. Chen, X. Li, Z. Yin, L. Wang, Y. Geng, X. Hong. Characteristics of D-shaped photonic crystal fiber surface plasmon resonance sensors with different side-polished lengths. Appl. Opt., 56, 11550(2017).

    [153] Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, Y. Geng. Experimental realization of D-shaped photonic crystal fiber SPR sensor. J. Phys. D: Appl. Phys., 50, 025101(2017).

    [154] X. C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, C. Gu. High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering. J. Opt. Soc. Am. A, 27, 308(2010).

    [155] P. Pinkhasova, H. Chen, J. Kanka, P. Mergo, H. Du. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform. Appl. Phys. Lett., 106, 071106(2015).

    [156] U. S. Dinish, G. Balasundaram, Y. T. Chang, M. Olivo. “Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. ”J. Biophotonics, 7, 956(2015).

    [157] M. Chen, T. Lang, B. Cao, Y. Yu, C. Shen. D-type optical fiber immunoglobulin G sensor based on surface plasmon resonance. Opt. Laser Technol., 131, 106445(2020).

    [158] A. Khetani, A. Momenpour, E. Alarcon, H. Anis. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS). Biomed. Opt. Express, 6, 4599(2015).

    CLP Journals

    [1] Xiaojing Wang, Xiaobo Li, Hui Xu, Longhui He, Xuelei Li, Yulan Dong, Xianfeng Chen. Third-order nonlinear phenomenon generated on the inner surface of bulk lithium niobate crystals with magnesium doping[J]. Chinese Optics Letters, 2022, 20(3): 031901

    [2] Shu Zong, Dongwen Zeng, Wen Yuan, Guiqiang Liu, Zhengqi Liu. Recent advances on perfect light absorbers and their promise for high-performance opto-electronic devices [Invited][J]. Chinese Optics Letters, 2022, 20(7): 073603

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Chao Liu, Jingwei Lü, Wei Liu, Famei Wang, Paul K. Chu. Overview of refractive index sensors comprising photonic crystal fibers based on the surface plasmon resonance effect [Invited][J]. Chinese Optics Letters, 2021, 19(10): 102202

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Jan. 21, 2021

    Accepted: Mar. 17, 2021

    Published Online: Sep. 2, 2021

    The Author Email: Chao Liu (msm-liu@126.com)

    DOI:10.3788/COL202119.102202

    Topics