Chinese Optics Letters, Volume. 20, Issue 7, 071401(2022)

Low-threshold continuous operation of fiber gas Raman laser based on large-core anti-resonant hollow-core fiber

Xinyue Zhu1,2, Fei Yu2,3,*, Dakun Wu3, Yan Feng2,3, Shufen Chen1, Yi Jiang1, and Lili Hu2,3
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
  • show less
    References (29)&Cited By (0)
    References

    [1] H. Bao, W. Jin, H. L. Ho. Tuning of group delay with stimulated Raman scattering-induced dispersion in gas-filled optical fiber. Chin. Opt. Lett., 18, 060601(2020).

    [2] Z. Zhang, Y. Wang, M. Zhou, J. He, C. Liao, Y. Wang. Recent advance in hollow-core fiber high-temperature and high-pressure sensing technology [Invited]. Chin. Opt. Lett., 19, 070601(2021).

    [3] F. Benabid, J. C. Knight, G. Antonopoulos, P. St.J. Russell. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 298, 399(2002).

    [4] H. Sakr, T. D. Bradley, G. T. Jasion, E. N. Fokoua, S. R. Sandoghchi, I. A. Davidson, A. Taranta, G. Guerra, W. Shere, Y. Chen, J. R. Hayes, D. J. Richardson, F. Poletti. Hollow core NANFs with five nested tubes and record low loss at 850, 1060, 1300 and 1625 nm. Optical Fiber Communications Conference and Exhibition, 1(2021).

    [5] R. W. Minck, R. W. Terhune, W. G. Rado. Laser stimulated Raman effect and resonant four-photon interactions in gases H2, D2, and CH4. Appl. Phys. Lett., 3, 181(1963).

    [6] D. J. Brink, D. Proch. Efficient tunable ultraviolet source based on stimulated Raman scattering. Opt. Lett., 7, 494(1982).

    [7] A. D. Papayannis, G. N. Tsikrikas, A. A. Serafetinides. Generation of UV and VIS laser light by stimulated Raman scattering in H2, D2, and H2/He using a pulsed Nd:YAG laser at 355 nm. Appl. Phys. B, 67, 563(1998).

    [8] P. Rabinowitz, A. Kaldor, R. Brickman, W. Schmidt. Waveguide H2 Raman laser. Appl. Opt., 15, 2005(1976).

    [9] L. S. Meng, K. S. Repasky, P. A. Roos, J. L. Carlsten. Widely tunable continuous-wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser. Opt. Lett., 25, 472(2000).

    [10] F. Benabid, G. Bouwmans, J. C. Knight, P. St.J. Russell, F. Couny. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen. Phys. Rev. Lett., 93, 123903(2004).

    [11] Z. Wang, F. Yu, W. J. Wadsworth, J. C. Knight. Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering. Laser Phys. Lett., 11, 105807(2014).

    [12] M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, I. A. Bufetov. Watt-level nanosecond 4.42 µm Raman laser based on silica fiber. IEEE Photonics Technol. Lett., 31, 78(2019).

    [13] W. Huang, Z. Li, Y. Cui, Z. Zhou, Z. Wang. Efficient, watt-level, tunable 1.7 µm fiber Raman laser in H2-filled hollow-core fibers. Opt. Lett., 45, 475(2020).

    [14] Y. Cui, W. Huang, Z. Li, Z. Zhou, Z. Wang. High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering. Opt. Express, 27, 30396(2019).

    [15] F. Benabid, G. Antonopoulos, J. C. Knight, P. St.J. Russell. Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber. Phys. Rev. Lett., 95, 213903(2005).

    [16] F. Benabid, F. Couny, J. C. Knight, T. A. Birks, P. St.J. Russell. Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers. Nature, 434, 488(2005).

    [17] F. Couny, F. Benabid, P. S. Light. Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber. Phys. Rev. Lett., 99, 143903(2007).

    [18] F. Couny, B. J. Mangan, A. V. Sokolov, F. Benabid. High power 55 watts CW Raman fiber-gas-laser. CLEO and QELS 2010 Conference(2010).

    [19] Y. Cui, Z. Zhou, W. Huang, Z. Li, Z. Wang. Quasi-all-fiber structure CW mid-infrared laser emission from gas-filled hollow-core silica fibers. Opt. Laser Technol., 121, 105794(2020).

    [20] Z. Wang, F. Yu, W. J. Wadsworth, J. C. Knight. Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering. Laser Phy. Lett., 11, 105807(2014).

    [21] Y. Chen, Z. Wang, B. Gu, F. Yu, Q. Lu. Achieving a 1.5 µm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth. Opt. Lett., 41, 5118(2016).

    [22] S. Edelstein, A. A. Ishaaya. High-efficiency Raman conversion in SF6- and CF4-filled hollow-core photonic bandgap fibers. Opt. Lett., 44, 5856(2019).

    [23] S. Gao, Y. Wang, W. Ding, P. Wang. Hollow-core negative-curvature fiber for UV guidance. Opt. Lett., 43, 1347(2018).

    [24] F. Yu, M. Xu, J. C. Knight. Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers. Opt. Express, 24, 12969(2016).

    [25] X. Zeng, S. Cui, J. Qian, X. Cheng, J. Dong, J. Zhou. 10 W low-noise green laser generation by the single-pass frequency doubling of a single-frequency fiber amplifier. Laser Phys., 30, 075001(2020).

    [26] R. M. Carter, F. Yu, W. J. Wadsworth, J. D. Shephard, T. Birks, J. C. Knight, D. P. Hand. Measurement of resonant bend loss in anti-resonant hollow core optical fiber. Opt. Express, 25, 20612(2017).

    [27] M. R. Perrone, G. D. Nunzio, C. Panzera. Competition between vibrational and rotational Raman scattering in H2. Opt. Commun., 145, 128(1998).

    [28] M. K. Mridha, D. Novoa, P. St.J. Russell. Dominance of backward stimulated Raman scattering in gas-filled hollow-core photonic crystal fibers. Optica, 5, 570(2018).

    [29] H. Li, W. Huang, Y. Cui, Z. Zhou, Z. Wang. Pure rotational stimulated Raman scattering in H2-filled hollow-core photonic crystal fibers. Opt. Express, 28, 23881(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xinyue Zhu, Fei Yu, Dakun Wu, Yan Feng, Shufen Chen, Yi Jiang, Lili Hu. Low-threshold continuous operation of fiber gas Raman laser based on large-core anti-resonant hollow-core fiber[J]. Chinese Optics Letters, 2022, 20(7): 071401

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers, Optical Amplifiers, and Laser Optics

    Received: Mar. 5, 2022

    Accepted: Apr. 18, 2022

    Published Online: May. 7, 2022

    The Author Email: Fei Yu (yufei@siom.ac.cn)

    DOI:10.3788/COL202220.071401

    Topics

    Please enter the answer below before you can view the full text.
    7+3=
    Submit